中文版 | ENGLISH | 会议室预定 | 在线投稿
 
   
 
当前位置: 首页 >> 师资队伍 >> 自动化系 >> 正文
师资队伍

丁红兵

Date:2023年05月05日

个人资料:

姓名:丁红兵

职称:副教授 / 博士生导师

学科专业:控制科学与工程 / 检测技术与自动化装置学科

通讯地址:天津大学电气自动化与信息工程学院26教学楼E515

电子信箱:hbding@tju.edu.cn

电话/传真:022-27402023

 

主要经历:

(1)      2018.07-至今     天津大学 电气自动化与信息工程学院  副教授,博士生导师

(2)      2017.07-2018.07    The University of Sheffield,访问学者(国家公派)

(3)      2015.02-2018.06   天津大学 电气自动化与信息工程学院  讲师,硕士生导师

(4)      2011.09-2015.01   天津大学 电气与自动化工程学院 控制科学与工程  博士

(5)      2009.09-2011.07   天津大学 电气与自动化工程学院 控制科学与工程  硕士

(6)      2005.09-2009.07   天津大学 电气与自动化工程学院   自动化专业    本科

 

主要研究方向:

(1)  多相流测量与数值模拟

电学、声学与光学传感技术,高速摄影及图像处理技术,多相流CFD仿真技术

(2)  超音速分离与计量技术

颗粒与液滴光学测量方法,超音速流动传热可视化与分析,碳捕集利用与封存技术(CCUS)

(3)  AI智能环控大数据分析

环境AI技术,利用大数据、机器学习、计算机视觉等技术开发智慧化环控核心算法

 

主要科研项目:

主持项目:

(1)      国家自然科学基金面上项目“超音速分离器凝结两相三场耦合机理及其液滴尺寸调控” 2023-2026

(2)      国家自然科学基金面上项目“基于凝结旋流运动映射的超音速分离器多维性能优化研究”(2019-2022

(3)      国家自然科学基金青年项目“基于边界层流动特性的音速喷嘴测量机理研究”(2016-2018

(4)      国家自然科学基金合作项目“融合超声和电容传感器的动态CCUS管道输送CO2质量流量在线测量”(2021-2024

(5)      天津市自然科学基金项目“音速喷嘴转捩过程中的流量特性研究”(2016-2019

(6)      2020.08-2020.12横向项目:真空环境泄露的流场与声场联合分析

(7)      2021.06-2024.05横向项目:环境品质CFD建模与智能监控

(8)      天津大学“北洋学者·青年骨干教师”人才项目(2017-2018

(9)      天津市过程检测与控制重点实验室开放基金(2016-2017

参与项目

(1)      国家自然科学基金面上项目“雾环状绕流涡街稳定性与测量机理研究”(2019-2022

(2)      国家自然科学基金重大科研仪器研制项目“基于电/磁双模层析成像的高固含率气液固三相流态化实验装置”(2017-2021

(3)      国家自然科学基金面上项目“基于转移和感应电荷信号分解与融合的气固两相流测量机理研究”(2017-2020

(4)      天津市自然科学基金项目“基于TMR传感器的EMT系统关键技术研究”(2019-2022

(5)      天津市自然科学基金项目“基于电导率法与激光散射法结合的雾霾流动参数测量系统研究”(2018-2021

(6)      天津市自然科学基金项目“音速喷嘴凝结作用机理与校正方法研究”(2015-2018

 

代表性论著、学术著作:

Peer-reviewed scientific journals (* represents corresponding author)

First/Corresponding Author:

[1]      Hongbing Ding, Yu Zhang, Yuanyuan Dong, Chuang Wen, Yan Yang, High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology, Applied Energy, 339: 120975, 2023.

[2]      Hongbing Ding, Yu Zhang, Yan Yang, Chuang Wen, A modified Euler-Lagrange-Euler approach for modelling homogeneous and heterogeneous condensing droplets and films in supersonic flows, International Journal of Heat and Mass Transfer, 200: 123537, 2023.

[3]      Hongbing Ding, Yuanyuan Dong, Yu Zhang, Yan Yang, Chuang Wen. A potential strategy of carbon dioxide separation using supersonic flows. Separation and Purification Technology, 303: 12215, 2022.

[4]      Hongbing Ding, Yu Zhang, Chunqian Sun, Yan Yang, Chuang Wen. Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models. Energy, 258: 124833, 2022.

[5]      Hongbing Ding, Yu Zhang, Chunqian Sun, Esmail Lakzian, Chuang Wen, Chao Wang. Unsteady non-equilibrium condensation flow of 3-D wet steam stage of steam turbine with roughness using sliding mesh method. International Journal of Thermal Sciences, 179, 107674, 2022.

[6]      Hongbing Ding, Chunqian Sun, Chuang Wen, Zhenxin Liang. The droplets and film behaviors in supersonic separator by using three-field two-fluid model with heterogenous condensation. International Journal of Heat and Mass Transfer, 184: 122315, 2022.

[7]      Hongbing Ding, Yafei Zhao, Chuang Wen, Chao Wang, Xixi Liu. A visual mass transfer study in the ejector considering phase change for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Desalination, 532: 115722, 2022.

[8]      Hongjun Sun; Tianyu Yang; Hongbing Ding*; Jinxia Li; Wenqiang Zhang. Online measurement of gas and liquid flow rates in wet gas by using vortex flowmeter coupled with conductance ring sensor. IEEE Transactions on Instrumentation and Measurement, 71:7500414, 2022.

[9]      Hongbing Ding, Yuhe Tian, Chuang Wen, Chao Wang, Chunqian Sun. Polydispersed droplet spectrum and exergy analysis in wet steam flows using method of moments. Applied Thermal Engineering, 182: 116148, 2021.

[10]  Hongbing Ding, Yafei Zhao, Yuhe Tian, Chuang Wen, Chao Wang. Modeling of self-excited oscillation of non-equilibrium condensation in transonic moist air flow. International Journal of Thermal Sciences, 168: 107040, 2021.

[11]  Hongbing Ding, Yafei Zhao, Chuang Wen, Chao Wang, Chunqian Sun. Energy efficiency and exergy destruction of supersonic steam ejector based on nonequilibrium condensation model. Applied Thermal Engineering, 189: 116704, 2021.

[12]  Hongjun Sun, Yikun Luo, Hongbing Ding*, Jinxia Li, Chenrui Song, Xixi Liu. Experimental investigation on atomization properties of impaction-pin nozzle using imaging method analysis. Experimental Thermal and Fluid Science, 122: 110322, 2021.

[13]  Peijuan Cao, Chao Wang, Chunhui Li, Lishui Cui, Hongbing Ding*, Yafei Zhao. The thermal effect on discharge coefficient of sonic nozzle based on reconstructed body temperature distribution by improved SOR method. IEEE Transactions on Instrumentation and Measurement, 70: 1007416, 2021.

[14]  Hongbing Ding, Chunqian Sun, Chao Wang, Chuang Wen, Yuhe Tian. Prediction of dehydration performance of supersonic separator based on a multi-fluid model with heterogeneous condensation. Applied Thermal Engineering, 171: 115074, 2020.

[15]  Hongbing Ding, Yiming Li, Chao Wang, Chuang Wen, Yuhe Tian. Feature extraction of oscillating flow with vapor condensation of moist air in a sonic nozzle. IEEE Transactions on Instrumentation and Measurement, 69(9):6465-6477, 2020.

[16]  Hongbing Ding, Yiming Li, Esmail Lakzian, Chuang Wen, Chao Wang. Entropy generation and exergy destruction in condensing steam flow through turbine blade with surface roughness. Energy Conversion and Management, 196: 1089-1104, 2019.

[17]  Chao Wang, Peijuan Cao, Chunhui Li, Hongbing Ding*, Lishui Cui. Influence of wall roughness on boundary layer transition position of the sonic nozzles. Measurement, 139: 196-204, 2019.

[18]  Chao Wang, Peijuan Cao, Hongbing Ding*, Xiaotong Wang, Daxuan Lin. Signal analysis of supersonic vapor condensation in nozzle sensor using distributed transient pressure probes. IEEE Transactions on Instrumentation and Measurement, 68(4): 1053-1061, 2019.

[19]  Chao Wang, Jinxia Li, Hongbing Ding*, Hongjun Sun, Xiaoliang Li. Vortex flowmeter with enhanced turndown ratio based on high-frequency pressure sensors and improved convection velocity estimation. Flow Measurement and Instrumentation, 69: 101626, 2019.

[20]  Hongbing Ding, Peng Xie, Derek Ingham, Lin Ma, Mohamed Pourkashanian. Flow behaviour of drop and jet modes of a laminar falling film on horizontal tubes. International Journal of Heat and Mass Transfer, 124: 929-942, 2018.

[21]  Chao Wang, Xiaotong Wang, Hongbing Ding*. Boundary layer of non-equilibrium condensing steam flow in a supersonic nozzle. Applied Thermal Engineering, 129: 389-402, 2018.

[22]  Hongbing Ding, Chao Wang, Gang Wang. Thermal effect on mass flow-rate of sonic nozzle. Thermal Science, 22(1): 247-262, 2018.

[23]  Hongbing Ding, Chao Wang, Gang Wang. Self-excited oscillation of non-equilibrium condensation in critical flow nozzle. Applied Thermal Engineering, 122: 515-527, 2017.

[24]  Hongbing Ding, Chao Wang, Gang Wang. Transient conjugate heat transfer in critical flow nozzles. International Journal of Heat and Mass Transfer, 104: 930-942, 2017.

[25]  Hongbing Ding, Chao Wang, Gang Wang. Approximate solution for discharge coefficient of the sonic nozzle with surface roughness. Flow Measurement and Instrumentation, 52: 227-232, 2016.

[26]  Chao Wang, Gang Wang, Hongbing Ding*. Thermal effect on body temperature distribution of the critical flow Venturi nozzle. Experimental Thermal and Fluid Science, 79: 187-194, 2016.

[27]  Hongbing Ding, Chao Wang, Gang Wang, Chao Chen. Analytic equations for the Wilson point in high-pressure steam flow through a nozzle. International Journal of Heat and Mass Transfer, 91: 961-968, 2015.

[28]  Hongbing Ding, Chao Wang, Chao Chen. Experimental and numerical studies on self-excited periodic oscillation of vapor condensation in a sonic nozzle. Experimental Thermal and Fluid Science, 68: 288-299, 2015.

[29]  Hongbing Ding, Chao Wang, Yakun Zhao. Surface roughness effect on flow measurement of real gas in a critical nozzle. Measurement, 68: 82-91, 2015.

[30]  Hongbing Ding, Chao Wang, Chao Chen. Effect of carrier gas pressure on vapor condensation and mass flow-rate in a sonic nozzle. Journal of Central South University, 22(12): 4864-4871, 2015.

[31]  Hongbing Ding, Chao Wang, Yakun Zhao. Flow characteristics of hydrogen gas through a critical nozzle. International Journal of Hydrogen Energy, 39(8): 3947-3955, 2014.

[32]  Hongbing Ding, Chao Wang, Yakun Zhao. An analytical method for Wilson point in nozzle flow with homogeneous nucleating. International Journal of Heat and Mass Transfer, 73: 586-594, 2014.

[33]  Hongbing Ding, Chao Wang, Chao Chen. Non-equilibrium condensation of water vapor in sonic nozzle. Applied Thermal Engineering, 71(1): 324-334, 2014.

[34]  Hongbing Ding, Chao Wang, Yakun Zhao. Influence of divergent section on flow fields and discharge coefficient of ISO toroidal-throat sonic nozzle. Flow Measurement and Instrumentation, 40: 19-27, 2014.

Co-Author:

[1]      Peiliang Yan, Weijun Fan, Yan Yang, Hongbing Ding, Adeel Arshad, Chuang Wen. Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations. Applied Energy, 327, 120064, 2022.

[2]      Chuang Wen, Bo Li, Hongbing Ding, Mohammad Akrami, Haoran Zhang, Yan Yang. Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing. Applied Energy, 310: 118523, 2022.

[3]      Daryoush Dadpour, Esmail Lakzian, Mohammad Gholizadeh, Hongbing Ding, Xu Han. Numerical modeling of droplets injection in the secondary flow of the wet steam ejector in the refrigeration cycle. International Journal of Refrigeration, 136, 103-113, 2022.

[4]      Chuang Wen, Hongbing Ding, Yan Yang. Numerical simulation of nanodroplet generation of water vapour in high-pressure supersonic flows for the potential of clean natural gas dehydration. Energy Conversion and Management, 231: 113853, 2021.

[5]      Yan Yang, Nikolas Karvounis, Jens Honore Walther, Hongbing Ding, Chuang Wen. Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations. Energy, 237: 121483, 2021.

[6]      Chuang Wen, Yan Yang, Hongbing Ding, Chunqian Sun, Yuying Yan. Wet steam flow and condensation loss in turbine blade cascades. Applied Thermal Engineering, 189: 116748, 2021.

[7]      Chuang Wen, Liang Gong, Hongbing Ding, Yan Yang. Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Applied Energy, 279: 115831, 2020.

[8]      Chuang Wen, Hongbing Ding, Yan Yang. Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour. Energy Conversion and Management, 222: 113210, 2020.

[9]      Chuang Wen, Hongbing Ding, Yan Yang. Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 489: 114531, 2020.

[10]  Peng Xie, Hongbing Ding, Derek Ingham, Lin Ma, Mohamed Pourkashanian. Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces. Applied Thermal Engineering, 115583, 2020.

[11]  Chuang Wen, Nikolas Karvounis, Jens Honore Walther, Hongbing Ding, Yan Yang. Non-equilibrium condensation of water vapour in supersonic flows with shock waves. International Journal of Heat and Mass Transfer, 149: 119109, 2020.

[12]  Peng Xie, Xuesong Lu, Hongbing Ding, Xin Yang, Derek Ingham, Lin Ma, Mohamed Pourkashanian. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed. Chemical Engineering Science, 199, 528-545, 2019.

[13]  Yan Yang, Xiaowei Zhu, Yuying Yan, Hongbing Ding, Chuang Wen. Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation. Applied Energy, 242, 157-167, 2019.

学术论著:

(1)      计算机控制技术(第二作者). 机械工业出版社, 2020, ISBN: 9787111649724.

 

授权发明专利:

(1)      丁红兵、孙春倩、王超、赵亚菲. 一种移动式超音速喷嘴连续测量系统,专利号:ZL 201911229750.5

(2)      丁红兵、田雨禾、梁真馨,一种基于气溶胶增强凝结的旋流超音速分离器实验系统,专利号:ZL202010244588.0

(3)      丁红兵、梁真馨、曹培娟,一种音速喷嘴管壁热场分布测量系统,专利号:ZL202010209500.1

(4)      丁红兵、李一鸣、王超、李金霞、张哲晓,一种多参数可调的雾状流实验系统,专利号:ZL201810644726.7

(5)      丁红兵、王超、林大烜,基于模糊PID的微雾发生装置控制方法,专利号:ZL201610697385.0

(6)      丁红兵、王刚、王超,管壁内部动态温度分布实时监测方法,专利号:ZL 201610614916.5

 

主要讲授课程:

(1)      计算机控制技术基础(本科生)

(2)      智能装置与设计(本科生)

(3)      智能装置课程设计(本科生)

(4)      预测控制系统(硕士生)

(5)      预测控制(博士生)

 

主要学术成就、奖励及荣誉:

(1)      天津市科学技术进步奖,二等奖,2022

(2)      中国计量测试学会科学技术进步奖,一等奖,2017

(3)      2021年度编辑精选奖 Editor Choice Paper Award, Selection Committee of Applied Thermal Engineering, 2021, awards a prize for only 4 best papers of the year (more than 1,600 papers per year)

(4)      受邀担任VinFuture全球科技奖提名专家,2023

(5)      中国仪器仪表学会“测量控制与仪器仪表领域”全国优秀博士论文(共2人),2017

(6)      教育部·高等学校虚拟仿真实验教学资源建设成果奖,一等奖,2016

(7)      天津市“131”创新型人才培养工程第三层次

(8)      天津大学“北洋学者·青年骨干教师”人才支持计划

(9)      天津大学沈志康奖教金

(10)   天津大学毕业设计优秀指导教师

(11)   天津大学优秀硕士论文指导教师(20202022

(12)   天津大学自动化学院优秀班主任

 

其他(社会兼职等):

(1)      International Journal of Aerospace Engineering (SCI), Editor Board Member

(2)      PLOS ONE (SCI), Editor Board Member

(3)      Frontiers in Energy Research (SCI), Guest Editor

(4)      中南大学学报(自然科学版)青年编委会

(5)      中国自动化学会智能制造系统专业专委会委员、中国计量测试学会多相流测试专业委员会青年委员等

(6)      Session Chair: International CCUS Conference 2023, 2023

(7)      Session Chair: CEN2023: Applied Energy Symposium, Clean Energy Towards Carbon Neutrality, 2023

(8)      Session Chair: ICAE2022, the 14th International Conference on Applied Energy, 2022

(9)      Session Chair: 14th International Green Energy Conference (IGEC-XIV), 2022

(10)   Session Chair: 11th International Symposium on Measurement Techniques for Multiphase Flow, 2019

(11)   2023年、2020年中国多相流测试学术年会分会主席

(12)   2020年中国工程热物理学会热机气动热力学和流体机械学术年会分会主席

(13)   国家自然科学基金评议专家,天津市、上海市、北京市等科技专家库专家