中文版 | ENGLISH | 会议室预定 | 在线投稿
 
   
 
当前位置: 首页 >> 师资队伍 >> D >> 正文
师资队伍

董峰

Date:2020年08月01日

个人资料:

姓名董峰

职称:教授/博士生导师

学科专业控制科学与工程/检测技术与自动化装置学科

通讯地址:天津大学电气自动化与信息工程学院26教学楼E426

电子信箱:mtad@tju.edu.cn

电话022-27892055

 

主要经历:

(1) 2017.01-今             天津大学电气自动化与信息工程学院,教授,博士生导师

(2) 2010.05-今             天津市过程检测与控制重点实验室,主任

(3) 2005.06-2016.12    天津大学电气与自动化工程学院,教授,博士生导师

(4) 2001.06-2005.06    天津大学电气自动化与能源工程学院,副教授,硕士生导师

(5) 1994.06-2001.06    天津大学电力及自动化工程系,讲师

(6) 1988.07-1994.06    天津大学电力及自动化工程系,助教

 

主要研究方向:

(1) 在线检测技术与智能系统

(2) 层析成像与多传感器融合

(3) 多相流检测、建模与分析

(4) 计算机过程控制系统应用

 

主要科研项目:

(1) 2020.01-2023.12:国家自然科学基金(面上)项目“多源信息融合油气水多相流流动状态分析与在线监测”;负责人

(2) 2019.04-2022.03:天津市自然科学基金(重点)项目“多源信息融合的油气水多相流过程状态可视化监测”;负责人

(3) 2018.04-2021.03:国际合作——日本SMC株式会社委托项目“气动测试与控制技术开发”;负责人

(4) 2016.10-2018.09:天津市创新平台建设项目“新型检测仪表研发与实验测试平台建设”;负责人

(5) 2016.01-2019.12:国家自然科学基金(面上)项目“电学/超声双模态层析成像融合机理与方法”;负责人

(6) 2015.03-2018.03:国际合作——日本SMC株式会社委托项目“气动测试与控制技术开发”;负责人

(7) 2013.10-2016.03:天津市科技创新体系及条件平台建设项目“复杂流动过程多模态测试实验平台建设”;负责人

(8) 2013.01-2016.12:国家自然科学基金(科学仪器基础研究)专项“油气水多相流过程参数可视化测试仪”;负责人

(9) 2012.01-2015.12:国家自然科学基金(面上)项目“多敏感场耦合多相流测量方法研究”;负责人

(10) 2011.10-2017.10:国家重大科学仪器设备开发专项:“水下油气水高效分离与计量装置(SSM)”,任务1:“多相流动可视化及参数测量系统”;负责人

(11) 2011.04-2014.03:天津市应用基础及前沿技术研究计划(重点)项目“多敏感场耦合多相流测量机理、模型与系统优化研究”;负责人

(12) 2008.04-2010.09:天津市应用基础及前沿技术研究计划(重点)项目“多传感器融合的油气水多相流测量系统研究”;负责人

(13) 2008.01-2010.12:国家自然科学基金(面上)项目“油气水三相流多源测量信息融合及流动特性研究”;负责人

(14) 2007.03-2015.03:国际合作——日本SMC株式会社委托项目“气动测试装置与技术开发”;负责人

(15) 2007.01-2009.12:教育部新世纪优秀人才支持计划“基于截面检测技术的多相流流动机理研究”;项目负责人

(16) 2006.12-2008.12:国家“863”计划(探索项目)“基于多传感器数据融合的油/气/水三相流测量”;负责人

(17) 2005.04-2008.04:天津市应用基础及前沿技术研究计划项目“基于多传感器数据融合两相流量计研究”;负责人

(18) 2003.01-2005.12:国家自然科学基金(面上)项目“两相管流测量的新方法”;负责人

 

代表性论著、学术著作:

学术论文:

(1) Landweber iterative image reconstruction method incorporated deep learning for electrical resistance tomography, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3038014)

(2) Multi-frequency fusion ultrasonic tomography for biphasic medium imaging based on simulation studies, Measurement Science and Technology, On-line. (DOI: 10.1088/1361-6501/abbebd)

(3) Absolute reconstruction of ultrasonic tomography for oil-water biphasic medium imaging using modified ray-tracing technique, Measurement: Sensors, On-line. (DOI: 10.1016/j.measen.2020.100023)

(4) Nonstationary image reconstruction in ultrasonic transmission tomography using Kalman filter and dimension reduction, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3031172)

(5) An FPGA-based multi-frequency EIT system with reference signal measurement, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3031158)

(6) An electrical and ultrasonic Doppler system for industrial multiphase flow measurement, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3013080)

(7) Measurement of particle concentration by multi-frequency ultrasound attenuation in liquid-solid dispersion, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, On-line. (DOI: 10.1109/TUFFC.2020.3020361)

(8) Electrical resistance tomography image reconstruction with densely connected convolutional neural network, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3013056)

(9) Combined planar magnetic induction tomography for local detection of intracranial hemorrhage, IEEE Transactions on Instrumentation and Measurement, On-line. (DOI: 10.1109/TIM.2020.3011621)

(10) A point constrained boundary reconstruction framework for ultrasound guided electrical impedance tomography, IEEE Transactions on Computational Imaging, 2020, Vol.6, pp. 1336-1350. (DOI: 10.1109/TCI.2020.3021228)

(11) Measurement of oil fraction in oil-water dispersed flow with swept-frequency ultrasound attenuation method, International Journal of Multiphase Flow, 2020, Vol.133, 103444(13p). (DOI: 10.1016/j.ijmultiphaseflow.2020.103444)

(12) A fast inclusion boundary reconstruction framework for electrical impedance tomography with parametric snake model, IEEE Transactions on Instrumentation and Measurement, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.10, pp. 7606-7616. (DOI: 10.1109/TIM.2020.2983620)

(13) An inclusion boundary and conductivity simultaneous estimation method for ultrasound reflection guided electrical impedance tomography, IEEE Sensors Journal, 2020, Vol.20, No.19, pp. 11578-11587. (DOI: 10.1109/JSEN.2020.2998852)

(14) Nonlinear ultrasonic transmissive tomography for low contrast biphasic medium imaging using continuous-wave excitation, IEEE Transactions on Industrial Electronics, 2020, Vol.67, No.10, pp. 8878-8888. (DOI: 10.1109/TIE.2019.2949531)

(15) Wide angle ultrasonic transmission tomography by sparse pre-imaged OMP algorithm, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.9, pp. 6262-6270. (DOI: 10.1109/TIM.2020.2967116)

(16) A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.7, pp.4887-4897. (DOI: 10.1109/TIM.2019.2954722)

(17) V-Net deep imaging method for electrical resistance tomography, IEEE Sensors Journal, 2020, Vol.20, No.12, pp. 6460-6469. (DOI: 10.1109/JSEN.2020.2973337)

(18) Dual-modality tomography by ERT and UTT projection sorting algorithm, IEEE Sensors Journal, 2020, Vol.20, No.10, pp. 5415-5423. (DOI: 10.1109/JSEN.2020.2969529)

(19) Amplitude modulation method for acoustic radiation force impulse excitation, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.5, pp. 2429-2438. (DOI: 10.1109/TIM.2020.2966309)

(20) Real-time reconstruction of ultrasonic tomography for two-phase flow imaging using continuous-wave excitation, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.4, pp. 1632-1642. (DOI: 10.1109/TIM.2019.2917736)

(21) Continuous-wave ultrasonic tomography for oil/water two-phase flow imaging using regularized weighted least square framework, Transactions of the Institute of Measurement and Control, 2020, Vol.42, No.4, pp.666-679. (DOI: 10.1177/0142331219853073)

(22) A Shape-based statistical inversion method for EIT/URT dual-modality imaging, IEEE Transactions on Image Processing, 2020, Vol29, No.1, pp.4099-4113. (DOI: 10.1109/TIP.2020.2969077)

(23) A wideband electrical impedance tomography system based on bioimpedance spectrum analysis, IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.1, pp. 144-154. (DOI: 10.1109/TIM.2019.2895929)

(24) An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging, IEEE Transactions on Industrial Electronics, 2019, Vol.66, No.12, pp. 9539-9548. (DOI: 10.1109/TIE.2019.2891455)

(25) A bilateral constrained image reconstruction method using electrical impedance tomography and ultrasonic measurement, IEEE Sensors Journal, 2019, Vol.19, No.21, pp. 9883-9895. (DOI: 10.1109/JSEN.2019.2928022)

(26) A Statistical Shape Constrained Reconstruction Framework for Electrical Impedance Tomography, IEEE Transactions on Medical Imaging, 2019, Vol.38, No.10, pp. 2400-2410. (DOI: 10.1109/TMI.2019.2900031)

(27) Three-dimensional hemorrhage imaging by cambered magnetic induction tomography, IEEE Transactions on Instrumentation and Measurement, 2019, Vol.68, No.7, pp.2460-2468. (DOI: 10.1109/TIM.2019.2900779)

(28) Electrical resistance tomography image reconstruction based on modified OMP algorithm, IEEE Sensors Journal, 2019, Vol.19, No.4, pp.5723-5731. (DOI: 10.1109/JSEN.2019.2906264)

(29) A fast iterative updated thresholding algorithm with sparsity constrains for electrical resistance tomography, Measurement Science and Technology, 2019, Vol.30, No.7, pp.074001(14p). (DOI: 10.1088/1361-6501/ab16aa)

(30) Focusing sensor design for open electrical impedance tomography based on shape conformal transformation, Sensors, 2019, Vol.19, No.9, pp.2060(22p). (DOI: 10.3390/s19092060)

(31) A Lagrange-Newton method for EIT/UT dual-modality image reconstruction, Sensors, 2019, Vol.19, No.9, pp.1966(18p). (DOI: 10.3390/s19091966)

(32) Gas-liquid flow pattern analysis based on graph connectivity and graph-variate dynamic connectivity of ERT, IEEE Transactions on Instrumentation and Measurement, 2019, Vol.68, No.5, pp.1590-1601. (DOI: 10.1109/TIM.2018.2884548)

(33) Horizontal oil-water two-phase dispersed flow velocity profile study by ultrasonic Doppler method, Experimental Thermal and Fluid Science, 2019, Vol.102, pp.357-367. (DOI: 10.1016/j.expthermflusci.2018.12.017)

(34) A transformation-domain image reconstruction method for open electrical impedance tomography based on conformal mapping, IEEE Sensors Journal, 2019, Vol.19, No.5, pp.1873-1883. (DOI: 10.1109/JSEN.2018.2884760)

(35) Oil-gas-water three-phase flow characterization and velocity measurement based on time-frequency decomposition, International Journal of Multiphase Flow, 2019, Vol.111, pp.219-231. (DOI: 10.1016/j.ijmultiphaseflow.2018.11.006)

(36) A robust inclusion boundary reconstructor for electrical impedance tomography with geometric constraints, IEEE Transactions on Instrumentation and Measurement, 2019, Vol.68, No.3, pp.762-773. (DOI: 10.1109/TIM.2018.2853358)

(37) Image reconstruction based on convolutional neural network for electrical resistance tomography, IEEE Sensors Journal, 2019, Vol. 19, No.1, pp.196-204. (DOI: 10.1109/JSEN.2018.2876411)

(38) Structural velocity measurement of gas–liquid slug flow based on EMD of continuous wave ultrasonic Doppler, IEEE Transactions on Instrumentation and Measurement, 2018, Vol.67, No.11, pp.2662-2675. (DOI: 10.1109/TIM.2018.2826858)

(39) Difference sensitivity matrix constructed for ultrasound modulated electrical resistance tomography, Measurement Science and Technology, 2018, Vol.29, No.10, pp.104005(15p). (DOI: 10.1088/1361-6501/aad733)

(40) Dispersed oil-water two-phase flow measurement based on pulse-wave ultrasonic Doppler coupled with electrical sensors, IEEE Transactions on Instrumentation and Measurement, 2018, Vol.67, No.9, pp.2129-2142. (DOI: 10.1109/TIM.2018.2814069)

(41) A new regularization algorithm based on neighborhood method for electrical impedance tomography, Measurement Science and Technology, 2018(, Vol.29, No.8, pp. 085401 (13p). (DOI: 10.1088/1361-6501/aac8b6)

(42) Inclusion boundary reconstruction and sensitivity analysis in Electrical Impedance Tomography, Inverse Problems in Science & Engineering, 2018, Vol.26, No.7, pp.1037-1061. (DOI: 10.1080/17415977.2017.1378195)

(43) An augmented lagrangian trust region method for inclusion boundary reconstruction using ultrasound/electrical dual-modality tomography, Measurement Science and Technology, 2018, Vol.29, No.7, pp.074008(12p). (DOI: 10.1088/1361-6501/aac160)

(44) Optimization of dual frequency-difference MIT sensor array based on sensitivity and resolution analysis, IEEE Access, 2018, Vol.6, pp.34911-34920. (DOI: 10.1109/ACCESS.2018.2849412)

(45) Multi-frequency dierence method for intracranial hemorrhage detection by magnetic induction tomography, Physiological Measurement, 2018, Vol.39, No.5, pp.055006(14p). (DOI: 10.1088/1361-6579/aac09c)

(46) Continuous wave ultrasonic Doppler modeling for oil-gas-water three-phase flow velocity measurement, IEEE Sensors Journal, 2018, Vol.18, No.9, pp.3703-3713. (DOI: 10.1109/JSEN.2018.2812834)

(47) Local characteristic of horizontal air-water two-phase flow by wire-mesh sensor, Transactions of the Institute of Measurement and Control, 2018, Vol.40, No.3, pp.746-761. (DOI: 10.1177/0142331216665689)

(48) Measurement of oil-water two-phase flow phase fraction with ultrasound attenuation, IEEE Sensors Journal, 2018, Vol.18, No.3, pp.1150-1159. (DOI: 10.1109/JSEN.2017.2779868)

(49) An instrumental electrode configuration for 3D ultrasound modulated electrical impedance tomography, IEEE Sensors Journal, 2017, Vol.17, No.24, pp.8206-8214. (DOI: 10.1109/JSEN.2017.2706758)

(50) Tomographic wire-mesh imaging based on sparse minimization, IEEE Sensors Journal, 2017, Vol.17, No.24, pp. 187-8195. (DOI: 10.1109/JSEN.2017.2752226)

(51) Gas-liquid two-phase flow velocity measurement with continuous wave ultrasonic Doppler and conductance sensor, IEEE Transactions on Instrumentation and Measurement, 2017, Vol.66, No.11. pp.3064-3076. (DOI: 10.1109/TIM.2017.2717218)

(52) Tissue acousto-electric effect modeling from solid mechanics theory, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, Vol.64, No.10, pp.1583-1590. (DOI: 10.1109/TUFFC.2017.2724066)

(53) Design of current source for multi-frequency simultaneous electrical impedance tomography, Review of Scientific Instruments, 2017, Vol.88, No.9, pp.094709(7p) (DOI: 10.1063/1.5004185

(54) Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by MIT, Measurement Science and Technology, 2017, Vol.28, No.8, pp.084001 (11p). (DOI: 10.1088/1361-6501/aa7504)

(55) Bubble-forming regime identification based on image textural features and the MCWA feature selection method, IEEE Access, 2017, Vol.5, pp.15820-15830. (DOI: 10.1109/ACCESS.2017.2716783)

(56) Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction, Measurement Science and Technology, 2017, Vol.28, No.7, pp.074003(12p). (DOI: 10.1088/1361-6501/aa6e23)

(57) Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution, Measurement Science and Technology, 2017, Vol.28, No.4, pp.045404 (14p). (DOI: 10.1088/1361-6501/aa5aed)

(58) Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil-water two-phase flow, Measurement Science and Technology, 2017, Vol.28, No.3, pp.035304 (17p). (DOI: 10.1088/1361-6501/aa58dc)

(59) Adaptive estimation of phase holdup of water-continuous oil-water two-phase flow, IEEE Access, 2017, Vol.5, pp.3569-3579. (DOI: 10.1109/ACCESS.2017.2670549)

(60) Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors, Measurement Science and Technology, 2016, Vol.27, No.12, pp.125307 (11p). (DOI: 10.1088/0957-0233/27/12/125307)

(61) An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography, Measurement Science and Technology, 2016, Vol.27, No.11, pp.114003 (13pp). (DOI: 10.1088/0957-0233/27/11/114003)

(62) An extended L-curve method for choosing a regularization parameter in electrical resistance tomography, Measurement Science and Technology, 2016, Vol.27, No.11, pp.114002 (11p). (DOI: 10.1088/0957-0233/27/11/114002)

(63) An on-line adaptive estimation method for water holdup measurement in oil-water two-phase flow with conductance/capacitance sensor, Measurement Science and Technology, 2016, Vol.27, No.7, pp.074001 (13p). (DOI: 10.1088/0957-0233/27/7/074001)

(64) Interface and permittivity simultaneous reconstruction in ECT based on boundary and finite elements coupling method, Philosophical Transactions A, 2016, Vol.374, No.2070, pp.20150333. (15p). (DOI: 10.1098/rsta.2015.0333)

(65) Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor, Philosophical Transactions A, 2016, Vol.374, No.2070, pp.20150335. (19p). (DOI: 10.1098/rsta.2015.0335)

(66) Measuring oil-water two-phase flow velocity with continuous wave ultrasound Doppler sensor and drift-flux model, IEEE Transactions on Instrumentation and Measurement, 2016, Vol.65, No.5, pp.1098-1107. (DOI: 10.1109/TIM.2015.2507740)

(67) Oil-water two-phase flow pattern analysis with the ERT based measurement and multivariate maximum Lyapunov exponent, Journal of Central South University, 2016, Vol.23, No.1, pp.240-248. (DOI: 10.1007/s11771-016-3067-3)

(68) Analysis of response for magnetic induction tomography with internal source, Measurement, 2016, Vol.78, pp.260-277. (DOI: 10.1016/j.measurement.2015.10.019)

(69) Dimensionality reduced simultaneous iterative reconstruction technique for electrical resistance tomography, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp.284-291. (DOI: 10.1016/j.flowmeasinst.2015.07.004)

(70) A hybrid regularization method combining Tikhonov with total variation for electrical resistance tomography, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp.268-275. (DOI: 10.1016/j.flowmeasinst.2015.07.001)

(71) Design of a conductance and capacitance combination sensor for water holdup measurement in oil-water two-phase flow, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp.218-229. (DOI: 10.1016/j.flowmeasinst.2015.06.026)

(72) A spatially adaptive total variation regularization method for electrical resistance tomography, Measurement Science and Technology, 2015, Vol.26, No.12, pp.125401 (15p.). (DOI: 10.1088/0957-0233/26/12/125401)

(73) Oil-water two-phase flow velocity measurement with continuous wave ultrasound Doppler and flow profile modeling, Chemical Engineering Science, 2015, Vol.135, pp.155-165. (DOI: 10.1016/j.ces.2015.05.011)

(74) Characterization of oil-water two-phase ow with a combined conductance/capacitance sensor and wavelet analysis, Chemical Engineering Science, 2015, Vol.134, pp.153–168. (DOI: 10.1016/j.ces.2015.04.046)

(75) A Kalman estimation based oil-water two-phase flow measurement with CRCC, International Journal of Multiphase Flow, 2015, Vol.72, pp.306–317. (DOI: 10.1016/j.ijmultiphaseflow.2014.06.014)

(76) Gas-water two-phase flow characterization with electrical resistance tomography and multivariate multiscale entropy analysis, ISA Transactions, 2015, Vol.55, pp.241-249. (DOI: 10.1016/j.isatra.2014.09.010)

(77) Reconstruct the phase distribution within an annular channel by electrical resistance tomography, Heat Transfer Engineering, 2015, Vol.36, No.12, pp.1053-1064. (DOI: 10.1080/01457632.2015.981087)

(78) An Lq–Lp optimization framework for image reconstruction of electrical resistance tomography, Measurement Science and Technology, 2014, Vol.25, No.12, pp.125402 (15p). (DOI: 10.1088/0957-0233/25/12/125402)

(79) A fast sparse reconstruction algorithm for electrical tomography, Measurement Science and Technology, 2014, Vol.25, No.8, pp.085401 (14p). (DOI: 10.1088/0957-0233/25/8/085401)

(80) A conductance ring coupled cone meter for oil-water two-phase flow measurement, IEEE Sensors Journal, 2014, Vol.14, No.4, pp.1244-1252. (DOI: 10.1109/JSEN.2013.2294629)

(81) Reconstruction of the three-dimensional inclusion shapes using electrical capacitance tomography, Measurement Science and Technology, 2014, Vol.25, No.2, pp. 025403 (16p). (DOI: 10.1088/0957-0233/25/2/025403)

(82) Horizontal oil-water two-phase flow measurement with information fusion of conductance ring sensor and cone meter, Flow Measurement and Instrumentation, 2013, Vol.34, pp.83-90. (DOI: 10.1016/j.flowmeasinst.2013.08.006)

(83) Reconstructing the geometric configuration of three dimensional interface using electrical capacitance tomography, International Journal for Numerical Methods in Engineering, 2013, Vol.96, No.10, pp.628-644. (DOI: 10.1002/nme.4574)

(84) Mass flow rate measurement of oil-water two-phase flow by a long-waist cone meter, IEEE Transactions on Instrumentation and Measurement, 2013, Vol.62, No.10, pp.2795-2804. (DOI: 10.1109/TIM.2013.2263660)

(85) Experimental and numerical design of a long-waist cone flow meter, Sensors and Actuators A: Physical, 2013, Vol.199, pp.9-17. (DOI: 10.1016/j.sna.2013.04.039)

(86) Response of excitation condition on electromagnetic tomography, Flow Measurement and Instrumentation, 2013, Vol.31, pp.10-18. (DOI: 10.1016/j.flowmeasinst.2012.10.002)

(87) 3D reconstruction of single rising bubble in water using digital image processing and characteristic matrix, Particuology, 2013, Vol.11, No.2, pp. 170-183. (DOI: 10.1016/j.partic.2012.07.005)

(88) A boundary element approach to estimate the free-surface in stratified two-phase flow, Measurement Science and Technology, 2012, Vol.23, No.10, pp.105401(10p). (DOI: 10.1088/0957-0233/23/10/105401)

(89) Design of parallel electrical resistance tomography system for measuring multiphase flow, Chinese Journal of Chemical Engineering, 2012, Vol.20, No. 2, pp.368-379. (DOI: 10.1016/S1004-9541(12)60400-5)

(90) Determining the boundary of inclusions with known conductivities using a Levenberg–Marquardt algorithm by electrical resistance tomography, Measurement Science and Technology, 2011, Vol.22, No.10, pp. 104005(13p). (DOI: 10.1088/0957-0233/22/10/104005) 

(91) Improved correlation for the volume of bubble formed in air-water system, Chinese Journal of Chemical Engineering, 2011, Vol.19, No.3, pp529-532. (DOI: 10.1016/S1004-9541(11)60017-7)

(92) Electrical resistance tomography for locating inclusions using analytical boundary element integrals and their partial derivatives, Engineering Analysis with Boundary Elements, 2010, Vol.34, No.10, pp. 876-883. (DOI: 10.1016/j.enganabound.2010.05.008)

(93) High GVF and low pressure gas-liquid two-phase flow measurement based on dual-cone flowmeter, Flow Measurement and Instrumentation, 2010, Vol.21, No.3, pp.410-417. (DOI: 10.1016/j.flowmeasinst.2010.06.004)

(94) Galerkin boundary element method for the forward problem of ERT, Flow Measurement and Instrumentation, 2010, Vol.21, No.3, pp.172-177. (DOI: 10.1016/j.flowmeasinst.2009.12.004)

(95) Separation of gas-liquid two-phase flow through independent component analysis, IEEE Transactions on Instrumentation and Measurement, 2010, Vol.59, No.5(SI), pp.1294-1302. (DOI: 10.1109/TIM.2010.2044077)

(96) Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio, Measurement Science and Technology, 2010, Vol.21, No.4, pp.045403 (12pp). (DOI: 10.1088/0957-0233/21/4/045403)

(97) Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction, Flow Measurement and Instrumentation, 2007, Vol.18, No.5, pp.255-261. (DOI: 10.1016/j.flowmeasinst.2007.08.003)

(98) Two methods for measurement of gas-liquid flows in vertical upward pipe using dual-plane ERT system, IEEE Transactions on Instrumentation and Measurement, 2006, Vol.55, No.5, pp.1576-1586. (DOI: 10.1109/TIM.2006.881564)

(99) Development of single drive electrode electrical resistance tomography system, IEEE Transactions on Instrumentation and Measurement, 2006, Vol.55, No.4, pp.1208-1214. (DOI: 10.1109/TIM.2006.877751)

(100) Application of dual-plane ERT system and cross correlation technique to measure gas-liquid flows in vertical upward pipe, Flow Measurement and Instrumentation, 2005, Vol.16, No.2-3, pp.191-197. (DOI: 10.1016/j.flowmeasinst.2005.02.010)

(101) Void fraction measurement for two-phase flow using electrical resistance tomography, Canadian Journal of Chemical Engineering, 2005, Vol.83, No.1, pp.19-23. (DOI: 10.1002/cjce.5450830105)

(102) On-line monitoring of nonaxisymmetric flow profile with a multielectrode inductance flowmeter, IEEE Transactions on Instrumentation and Measurement, 2004, Vol.53, No.4, pp.1321-1326. (DOI: 10.1109/TIM.2004.831451)

(103) On fluctuation of the dynamic differential pressure signal of venturi meter for wet gas metering, Flow Measurement Instrumentation, 2003, Vol.14, No.4-5, pp.211-217. (DOI: 10.1016/S0955-5986(03)00027-X)

(104) Application of electrical resistance tomography to two-phase pipe flow parameters measurement, Flow Measurement and Instrumentation, 2003, Vol.14, No.4-5, pp.183-192. (DOI: 10.1016/S0955-5986(03)00024-4)

(105) Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter, Measurement Science and Technology, 2001, Vol12, No.8, pp.1139-1146. (DOI: 10.1088/0957-0233/12/8/321)

(106) Design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow, Measurement Science and Technology, 2001, Vol12, No.8, pp.1024-1031. (DOI: 10.1088/0957-0233/12/8/306)

(107) Identification of two-phase flow regimes in horizontal, inclined and vertical pipes, Measurement Science and Technology, 2001, Vol12, No.8, pp.1069-1075. (DOI: 10.1088/0957-0233/12/8/312)

(108) 多模态流动成像技术研究进展,仪器仪表学报,2015,Vol.36,No.2,pp.241-253.

(109) 多相流过程参数检测技术综述,自动化学报,2013,Vol.39,No. 11,pp. 1923-1932. 

(110) 油水两相超声成像修正路径追踪重建方法,工程热物理学报,2020,Vol.41,No.10,pp.2466-2472.

(111) 自适应阈值收缩算子的稀疏正则化图像重建算法,中国科学院大学学报,2020(MAR),Vol.37,No 2,pp.242-247.

(112) 高斯回归预测重建的高分辨率超声成像,中国科学院大学学报,2020,Vol.37,No 2,pp.234-241.

(113) 基于超声多普勒与电导环的油水两相流速测量,北京航空航天大学学报,2019,Vol.45,No.8,pp. 1536-1543.

(114) 全连接深度网络的电学层析成像算法,工程热物理学报,2019,Vol.40,No.7,pp.1526-1531.

(115) 油水两相流中油相流量的测量,控制工程,2018,Vol.25,No.9,pp.1698-1702.

(116) 超声衰减法测量油水分散流中颗粒粒度分布,工程热物理学报,2018,Vol.39,No.4,pp.806-810.

(117) 油水两相流超声测试机理仿真建模,中南大学学报,2018,Vol.49,No.4,pp.987-994.

(118) 超声多普勒谱修正的油水两相流流速测量,机械工程学报,2017,Vol.53,No.24,pp.77-84.

(119) 工业总线标准电容层析成像系统设计,北京航空航天大学学报,2017,Vol.43,No.11,pp.2338-2344.

(120) 多激励频率模式的磁感应层析成像系统,北京航空航天大学学报,2017,Vol.43,No.11,pp.2331-2337.

(121) 油水分散流超声互相关流速测量方法,工程热物理学报,2017,Vol.38,No.3,pp.562-567.

(122) ERT/UTT双模态传感器尺寸优化仿真研究,北京航空航天大学学报,2017,Vol.43,No.2,pp.388-394.

(123) 电容电导传感器油水两相流含率测量,中国科学院大学学报,2017,Vol.34,No.2,pp.113-119.

(124) 基于截面电导信息的油水两相流相含率估计,天津大学学报,2016,Vol.49,No.11,pp.1121-1126.

(125) 具有高速远程通讯功能的工业ERT系统设计,传感器与微系统,2016,Vol.35,No.10,pp.93-96.

(126) 超声多普勒水连续油水分散流流速测量方法,工程热物理学报,2016,Vol.37,No.4,pp.775-779.

(127) 基于阻抗特性分析的电磁层析成像传感器优化,传感器与微系统,2016,Vol.35,No.3,pp.49-52.

(128) 油水两相流超声波衰减测试方法研究,中南大学学报(自然科学版),2015,Vol.47,No.2,pp. 647-653.

(129) 集中式电动汽车电池管理系统设计,电子测量与仪器学报,2015,Vol.29,No.7,pp.1019-1027.

(130) 油水两相流含水率测量组合传感器,工程热物理学报,2015,Vol.36,No.7,pp.1487-1491.

(131) 基于多频带谱熵的水平气液两相流结构复杂性分析,仪器仪表学报,2015,Vol.36,No.5,pp.1138-1146.

(132) 基于神经网络的建筑结构损伤识别方法,控制工程,2015,Vol.22,No.2,pp.287-290.

(133) 用于电阻层析成像的快速自适应硬阈值算法,天津大学学报(自然科学版),2015,Vol.48,No.4,pp.305-310.

(134) 水平管道油气水三相流含水率测量,传感器与微系统,2015,Vol.34,No.1,pp.135-137.

(135) 非完整ERT数据的两相层状流分布图像重建,仪器仪表学报,2014,Vol.35,No.11,pp.2574-2581.

(136) 基于卡尔曼估计融合算法的油水两相流测量,天津大学学报(自然科学版),2014,Vol.47,No.10,pp.903-908.

(137) 气液两相流含气率超声测试方法研究,仪器仪表学报,2014,Vol.35,No.9,pp.2094-2101.

(138) 被测物场空间分布对电磁测量系统相位检测的影响分析,中国电机工程学报,2014,Vol.34,No.20,pp.3362-3368.

(139) 基于边界元与有限元耦合的ERT图像重建算法,工程热物理学报,2014,Vol.35,No.5,pp.902-905.

(140) 基于边界元方法的两相层状流相界面重建,工程热物理学报,2013,Vol.34,No.12,pp. 2295-2298.

(141) 长腰内锥流量计的特性研究,工程热物理学报,2012,Vol.33,No.9,pp. 1539-1542.

(142) 基于弧状电极传感器的气/水两相流参数测量系统设计,传感器与微系统,2012,Vol.31,No.3,pp.122-125.

(143) 内锥式流量计数值模拟及优化设计,工程热物理学报,2011,Vol.32,No.7,pp. 1165-1168.

(144) 电磁层析成像系统敏感场激励特性仿真研究,中国电机工程学报,2011,Vol.31,No.8,pp.73-79.

(145) 基于V型内锥与电导环的油水两相流参数测量,仪器仪表学报,2010,Vol.31,No.11,pp.2561-2567.

(146) 基于PXI的截面电阻信息检测系统设计,工程热物理学报,2010,Vol.31,No.11,pp.1863-1866.

(147) 用于气液两相流测量的正弦电流激励源的设计,电源技术,2010,Vol.34,No.7,pp.687-690.

(148) 两相流测量中环形电导传感器特性研究,中国电机工程学报,2010,Vol.30,No.17,pp.62-66.

(149) 用于气水两相流流型识别的ERT信息融合方法,工程热物理学报,2010,Vol.31,No.5,pp.785-788.

(150) 气液两相流中上升气泡体积的计算方法,仪器仪表学报,2009,Vol.30,No.11,pp.2444-2449.

(151) 应用多传感器时间融合的塞状流测量研究,工程热物理学报,2009,Vol.30,No.10,pp.1685-1688.

(152) 小波神经网络在油水两相流软测量中的应用,天津大学学报(自然科学版),2009,Vol.42,No.9,pp.808-812.

(153) 油水两相流质量流量小波网络软测量模型研究,工程热物理学报,2009,Vol.30,No.5,pp.807-810. 

(154) 基于AD7366/AD7367的高速数据采集模块设计,电子技术应用,2008,Vol.34,No.12 ,pp.89-91,94.

(155) 基于V型内锥流量计测量气/水两相流的研究,工程热物理学报,2007,Vol.28,No.S1,pp.205-208.

(156) 电阻层析成像技术在两相流测量中的应用,工程热物理学报,2006,Vol.27,No.5,pp.791-795. 

(157) 应用电阻层系成像技术测量垂直管道气/液两相流分相含率,天津大学学报(自然科学版),2004,Vol.37,No.6,pp.510-514. 

(158) 基于ERT技术的垂直管道流型识别,仪器仪表学报,2004,Vol.25,No.4,pp.457-461. 

(159) 电阻层析成像技术测量两相流气相流量,化工自动化及仪表,2004,Vol.31,No.2,pp.52-54. 

(160) 非牛顿液体粘度的在线测量方法,天津大学学报,2003,Vol.36,No.2,pp.169-173. 

(161) 基于多电极电磁流量计的流速场重建,自然科学进展,2002,Vol.12,No.5,pp.524-528.

(162) 电阻层析成像技术在两相管流测量中的应用,化工自动化及仪表,2001,Vol.28,No.6,pp.50-54. 

(163) 提高电阻层析成像实时性能的研究,天津大学学报(自然科学版),2001,Vol.34,No.4,pp.467-471.

(164) 电磁层析成像技术图像重建的仿真研究, 天津大学学报(自然科学版),2001,Vol.34,No.4,pp.435-438.

(165) 迭代法求矩阵广义逆的ERT图像重建算法,自然科学进展,2001,Vol.11, No.4,pp.409-414.

(166) 脉动气流对孔板流量计示值影响的实验研究,计量学报,2001,Vol.22.,No.1,pp.46-51.

(167) 用孔板流量计测量脉动气流,天津大学学报(自然科学版),2000,Vol.33,No.5,pp.569-573.

(168) 脉动流条件下煤气计量的误差估计,煤气与热力,1998,Vol.18,No.1,pp.27-31.

 

学术论著:

(1) Chapter16 “Applications of tomography in mineral transportation” of 《Industrial tomography: systems and applications》, Editor: Mi Wang, Woodhead Publishing Limited. 2015.04

 

专利:

(1) 油气水三相介质衰减谱融合多频超声层析成像方法,发明专利,专利申请号:202010893091.1

(2) 一种用于分散相含率检测的扫频超声衰减测量方法,发明专利,专利申请号:202010802414.1

(3) 用于多相流测量的阵列式超声扫描成像系统,发明专利,专利申请号:202010080999.0

(4) 一种用于管道内超声相控阵成像的声束偏转时延控制方法,发明专利,专利申请号:201911244568.7

(5) 一种用于管道内超声相控阵成像的声束聚焦时延控制方法,发明专利,专利申请号:201911244567.2

(6) 基于位移衰减特性的声辐射力脉冲弹性成像方法,发明专利,专利申请号:201911091301.9

(7) 基于多频加权频差的多介质分离成像方法,发明专利,专利申请号:201911091275.X

(8) 正则化加权最小二乘的透射反射双模式超声层析成像重建方法,发明专利,专利申请号:201910854620.4

(9) 信息流与梯度流增强的深度V型密集网络成像方法,发明专利,专利申请号:201910798706.X

(10) 电学/超声信息融合的双模态层析成像方法,发明专利,专利申请号:201910786495.8

(11) 多模式曲面相控阵超声层析成像装置,发明专利,专利申请号:201910798140.0

(12) 一种收缩系数改进Tikhonov正则化参数的电阻层析成像算法,发明专利,专利申请号:201910467601.6

(13) 基于多物理场耦合的超声弹性成像仿真方法,发明专利,专利申请号:201910467054.1

(14) 基于灵敏度矩阵优化的电学层析成像正则化重建方法,发明专利,专利申请号:201910403259.3

(15) 基于幅值调制的声辐射力脉冲激励方法,发明专利,专利申请号:201910403249.X

(16) 利用声阻抗变化信息的介质分界面超声检测方法,发明专利,专利申请号:201910359459.3

(17) 修正路径追踪描述的连续波超声层析成像重建方法,发明专利,专利申请号:201910195283.2

(18) 基于聚焦超声声振信号的弹性成像方法,发明专利,专利申请号:201910147428.1

(19) 基于聚焦超声声振信号的弹性特性检测方法,发明专利,专利申请号:201910147443.6

(20) 基于统计逆的电学/超声双模态内含物边界重建方法,发明专利,专利申请号:201910127240.0

(21) 基于空洞卷积网络的电阻抗图像重建方法,发明专利,专利申请号:201910074577.X

(22) 透射反射模态融合的超声层析成像方法,发明专利,专利申请号:201910009921.7

(23) V-Net深度成像方法,发明专利,专利申请号:201811411535.2

(24) 总变差正则化约束的超声成像同步代数迭代重建方法,发明专利,专利申请号:201811287534.1

(25) 基于保形变换的开放式电阻抗层析成像图像重建方法,发明专利,专利申请号:201811286530.1

(26) 超声反射信息约束的腹部病变电阻抗图像重建方法,发明专利,专利申请号:201811216126.7

(27) 基于卷积神经网络的电学层析成像图像重建方法,发明专利,专利申请号:201811183924.4

(28) 基于CPCI总线的可扩展的多模态层析成像系统,发明专利,专利申请号:201811071399.7

(29) 一种多模态层析成像控制方法,发明专利,专利申请号:201811071460.8

(30) 可扩展的多模态层析成像系统,发明专利,专利申请号:201811071494.7

(31) 油气水三相流分相流速声电双模态测量方法,发明专利,专利号:ZL 201810990581.6

(32) 非均匀形状约束的像素值域滤波超声成像重建方法,发明专利,专利申请号:201810837811.5

(33) 基于低秩稀疏分解的电阻抗图像重建方法,,发明专利,专利申请号:201810849422.4

(34) 基于几何形状约束的电阻抗层析成像内含物边界重建方法,发明专利,专利申请号:201810836856.0

(35) L1-L2空间自适应电学层析成像正则化重建方法,发明专利,专利申请号:201810528437.0

(36) 一种基于残差最小的电阻抗层析成像图像分割方法,发明专利,专利申请号:201810433712.0

(37) 电学谱表征的自适应宽频电阻抗层析成像方法,发明专利,专利申请号:201810350517.1

(38) 超声平面波扫描式多相流可视化测量装置,发明专利,专利申请号:201810054220.0

(39) 基于传播路径网格剖分的超声透射模式层析成像方法,专利号:ZL 201711489380.X

(40) 基于数据融合的两相流流型识别方法,发明专利,专利号:ZL 201711239764.6

(41) 基于超声脉冲多普勒与电学多传感器的两相流流速测量方法,发明专利,专利号:ZL 201710719602.6

(42) 气液弹状流结构流速声电双模态测量方法,发明专利,专利号:ZL 201710638226.8

(43) 基于声电效应与声辐射力的生物组织多特性成像方法,发明专利,专利号:ZL 201710623678.9

(44) 基于邻点变差和的电学层析成像正则化重建方法,发明专利,专利号:ZL 201710470024.7

(45) 应用匹配追踪的层析成像重建方法,发明专利,专利号:ZL 201710333914.3

(46) 两相流过程参数的声电双模态融合测量方法,发明专利,专利号:ZL 201710293968.1,

(47) 用于丝网传感器的超分辨率成像方法,发明专利,专利号:ZL 201710251647.5

(48) 超声多普勒多相流流速分布检测设备,发明专利,专利号:ZL 201710191680.3

(49) 油气水三相塞状分散流流速测量方法,发明专利,专利号:ZL 201710166489.3

(50) 基于建立标准值的声电成像方法,发明专利,专利号:ZL 201710104553.5

(51) 气液两相弹状流和塞状流流速声电双模态测量方法,发明专利,专利号:ZL 201710109307.9

(52) 气液两相泡状流流速声电双模态测量方法,发明专利,专利号:ZL 201710110230.7

(53) 抑制组织间互感耦合作用的多频电磁层析成像方法,发明专利,专利号:ZL 201710090241.3

(54) 两相流含水率自适应串联估计方法,发明专利,专利号:ZL 201710029359.5

(55) 连续波超声多普勒谱修正的两相流流速测量方法,发明专利,专利号:ZL 201611097460.6

(56) 用于脑出血检测的多频电磁层析成像方法,发明专利,专利号:ZL 201611031436.2

(57) 一种基于Firm阈值迭代的电学层析成像稀疏重建方法,发明专利,专利号:ZL 201610866927.2

(58) 基于电学/超声双模态融合成像技术的层状界面重建方法,发明专利,专利号:ZL 201610866782.6

(59) 油水两相流含水率自适应估计方法,发明专利,专利号:ZL 201610705211.4

(60) 两相流相含率超声回波测量方法,发明专利,专利号:ZL 201610577470.3

(61) 基于超声衰减机理模型的油水两相流相含率测量方法,发明专利,专利号:ZL 201610519665.2

(62) 两相流含水率的自适应估计方法,发明专利,专利号:ZL 201610300174.9

(63) 一种用于生物电阻抗成像的激励电流源,发明专利,专利号:ZL 201610134435.4

(64) 两相流速声电双模态测量方法,发明专利,专利号:ZL 201510493431.0

(65) 两相流分相流速声电双模态测量方法,发明专利,专利号:ZL 201510263691.9

(66) 基于电磁涡流检测的两相流相含率测量方法,发明专利,专利号:ZL 201510188815.1

(67) 基于声电效应的三维功率密度成像方法,发明专利,专利号:ZL 201510084487.0

(68) 基于声电效应的功率密度成像方法,发明专利,专利号:ZL 201510084606.2

(69) 基于超声聚焦扰动信息构建灵敏度矩阵法,发明专利,专利号:ZL 201510083590.3

(70) 基于p向量等差下降的电学层析成像Lp正则化重建方法,发明专利,专利号:ZL 201510084393.3

(71) 基于p向量等比收缩的电学层析成像Lp正则化重建方法,发明专利,专利号:ZL 201510084550.0

(72) 一种基于二阶微分的修正L曲线电学层析成像重建方法,发明专利,专利号:ZL 201510022756.0

(73) 一种基于曲率计算的改进L曲线电学层析成像重建方法,发明专利,专利号:ZL 201510021945.6

(74) 基于超声与电学多传感器互相关测速的多相流测试方法,发明专利,专利号:ZL 201410328238.7

(75) 基于超声多普勒与电学多传感器的多相流可视化测试方法,发明专利,专利号:ZL 201410328267.3

(76) 基于电学与超声敏感原理的多相流可视化测试方法,发明专利,专利号:ZL 201410328237.2

(77) 一种基于异步通信模式的光纤数据传输方法,发明专利,专利号:ZL 201410209577.3

(78) 用于管道内流体过程参数检测的内外复合式阵列传感器,发明专利,专利号:ZL 201110319799.7

(79) 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法,发明专利,专利号:ZL 201110048191.5

(80) 基于多截面阻抗式双差压长腰内锥的多相流测量方法,发明专利,专利号:ZL 201110047911.6

(81) 基于双截面阻抗式长腰内锥传感器的多相流测量方法,发明专利,专利号:ZL 201110048160.X

(82) 基于单截面阻抗式长腰内锥传感器的多相流测量方法,发明专利,专利号:ZL 201110048192.X

(83) 一种基于工业标准的多截面过程数据采集系统,发明专利,专利号:ZL 200910069106.6

(84) 基于截面测量的气液两相流测量方法及装置,发明专利,专利号:ZL 200610129787.7

(85) 基于电阻层析成像技术的气液两相流流型识别方法,发明专利,专利号:ZL 02129061.X

 

计算机软件著作权

(1) 过程层析成像多相流测量软件(PTS-MFM ToolSuite),软件著作权登记,登记号:2011SR013160,登记证书号:软著登字第0276834号

(2) 电学层析成像系统多相流工业测试软件(ET-MPFIM Software),软件著作权登记,登记号:2014SR013764,登记证书号:软著登字第0683008号

(3) 电学超声双模态层析成像应用软件(EUT Application),软件著作权登记,登记号:2016SR368010,登记证书号:软著登字第1546626号

(4) TERT-C5测量软件(TERT-C5 ToolSuit),软件著作权登记,登记号:2017SR309203,登记证书号:软著登字第1894487号

 

主要讲授课程:

本科生课程:过程控制系统;计算机控制系统;自动检测技术;模式识别基础

研究生课程:专业学术研究方法论(硕士);工业标准与标准化基础(硕士、博士);多传感器融合(硕士);多传感器数据融合(博士);工业过程测量、控制与自动化标准(硕

士);过程层析成像原理、技术与应用(硕士、博士)

 

主要学术成就、奖励及荣誉

(1) 2019年:天津市工程专业学位优秀指导教师奖

(2) 2019年:指导的博士学位论文《基于超声调制的电阻抗层析成像技术研究》,被评为2019年中国仪器仪表学会,测量控制与仪器仪表领域全国优秀博士论文

(3) 2016年:天津大学“优秀共产党员”

(4) 2015年:指导的博士学位论文《电学层析成像形状重建方法研究》,被评为天津大学优秀博士学位论文

(5) 2015年:指导的硕士学位论文《基于三维椭球模型的气水泡状流运动特性研究》,被评为天津市优秀硕士学位论文

(6) 2013年:指导的博士学位论文《基于多传感器融合的两相流参数测量方法》,被评为天津市优秀博士学位论文

(7) 2012年:天津市教育系统“教工先锋岗”先进个人

(8) 2012年-今:受邀在国际、国内学术会议做邀请学术报告10余次

(9) 2010年:“两相流过程截面检测信息提取研究”,获天津市自然科学三等奖;第1完成人

(10) 2010年-今:受邀在国内外大学、研究机构做学术报告、讲座10余次

(11) 2008年-今:获国际、国内学术会议最佳论文奖(Best Paper Award)、优秀论文奖10余次

(12) 2007年-今:多次指导本科生、研究生参加全国科技竞赛获得一等奖和二等奖

(13) 2007年:教育部“新世纪优秀人才计划”

(14) 2003年:天津大学“优秀共产党员”

(15) 2003年:“过程层析成像技术及其应用的研究”,获中国仪器仪表学会科学技术创新奖;第2完成人

(16) 2002年:“基于电学敏感原理的过程层析成像技术研究”,获天津市自然科学二等奖;第4完成人

(17) 2001年-今:多次获得天津大学本科毕业设计优秀指导教师

(18) 1995年:天津大学第一届“十佳杰出青年”

 

其他(社会兼职等):

(1) 国务院学位委员会第六、七届学科评议组(控制科学与工程组)成员(2009-2020)

(2) International Society for Industrial Process Tomography (ISIPT)(国际工业过程层析成像技术学会)Vice President

(3) 中国仪器仪表学会理事,专家委员会委员,节能应用技术分会副理事长,产品信息工作委员会顾问

(4) 中国计量测试学会理事,多相流测试专业委员会副主任

(5) 中国工程热物理学会多相流专业委员会委员

(6) 全国工业过程测量控制和自动化标准化技术委员会(SAC/TC124)委员

(7) 天津市人民政府学位委员会(电子与信息工程)学科评议组成员

(8) 天津市自动化学会常务理事,过程控制专业委员会主任

(9) 天津市仪器仪表学会理事 

(10) IEEE Senior Member

(11) 《Flow Measurement and Instrumentation》Editorial Advisory Board Member

(12) 《中国大百科全书(控制科学与工程卷)》(第三版)副主编

(13) 《自动化学报》编委

(14) 《仪器仪表用户》编委会主任

(15) 作为组织委员会主席,国际科学委员会(ISC)、组织委员会(IOC)、技术委员会(ITC)、程序委员会(IPC)成员,参与组织国际、国内学术会议30余次。