中文版 | ENGLISH | 会议室预定 | 在线投稿
 
   
 
当前位置: 首页 >> 师资队伍 >> R >> 正文
师资队伍

任群

Date:2024年04月07日


姓名:任群

职称:副研究员/硕士生导师

学科专业:信息与通信工程

邮箱:renqun@tju.edu.cn   

通讯地址:天津大学电气自动化与信息工程学院26教学楼D125

招生信息:

欢迎对智能MRI医疗成像、人工智能超材料、深度学习、智能超材料机器人脑、电磁感知与现代移动通讯感兴趣的同学前来咨询与交流,欢迎本科同学加入科研训练与毕业设计。

主要经历:

(1)      2022-    天津大学,电气自动化与信息工程学院,副研究员/硕士生导师

(2)      2020-2022  天津大学,电气自动化与信息工程学院,讲师

(3)      2019-2019 英国  伦敦大学学院(UCL),研究助理

(4)      2015-2019  英国  伦敦大学学院(UCL),公派全奖,工学博士

(5)      2014-2014  新加坡  南洋理工大学(NTU),淡马锡基金,访问学士

(6)      2011-2015 天津大学,电子信息工程学院,工学学士

主要研究方向:

(1)      计算及应用电磁学(磁共振医疗成像、电磁超表面、射频—场路协同仿真)

(2)      深度学习与逆设计(人工智能超表面、智能超材料机器人脑、智能电磁感知与成像)

(3)      微纳光学、非线性光学(拓扑光子学、光电子器件设计、电磁量子化)

科研项目:

(1)      国家重点研发计划项目,智能磁共振医疗方向,子课题负责人

(2)      天津大学科技创新领军人才培育启明计划项目,智能磁共振医疗方向,项目负责人

(3)      国家自然科学基金青年项目,光学超表面方向,项目负责人

(4)      东南大学毫米波国家重点实验室开放课题,太赫兹超表面方向,项目负责人

(5)      中国博士后国际交流计划引进项目,超快光子学方向,项目负责人

(6)      中国博士后科学基金面上资助项目,光学超表面方向,项目负责人

(7)      天津大学自主创新基金,5G移动通讯方向,项目负责人

(8)      国家留学基金委公派项目,非线性光学方向,项目负责人

(9)      伦敦大学学院院长奖项目,非线性光学方向,项目负责人

(10)   新加坡淡马锡基金,模型预测控制方向,项目负责人

(11)   国家重点研发计划“战略性科技创新合作”重点专项,5G移动通讯方向,项目骨干

(12)   欧盟研究委员会(ERC)项目,非线性光学方向,参与成员

(13)   国家自然科学基金面上项目,光电传感器方向,参与成员

(14)   国家自然科学基金面上项目,人工智能方向,参与成员

教学项目:

(15)   2023.01-2023.12 新工科教学改革“基础知识贯通的通信工程专业核心课程体系建设”项目,模块负责人

学术工作:

(1)      Frontiers in Nanotechnology副主编

(2)      Frontiers in Physics主题编辑(IF:3.718

(3)      国际电磁会议PIERS2023太赫兹与红外超材料分会主席

(4)      国际电磁会议PIERS2024深度学习电磁技术分会主席

讲授课程:

电磁场理论(本科生)

光通信工程前沿技术及行业标准 (全英文,硕士生,天大—华为智能基座合作课程)

学术论著:

Ming Fang, Qun Ren, Jian Wei You, Zhihao Lan, Zhixiang Huang and Wei E. I. Sha, Plasmon-enhanced Light-matter Interactions, Chapter: Advanced Applications of Nonlinear Plasmonics, Springer, ISBN 978-3-030-87543-5.

学术论文:

1)        Q. Ren, Y. Lang, Y. Jia, X. Xiao, Y. Liu, X. Kong, R. Jin, Y. He, J. Zhang, J. You, Wei E. I. Sha, and Y. Pang, “High-Q metasurface signal isolator for 1.5T surface coil magnetic resonance imaging on the go,” Optics Express 32, 8751-8762 (2024).

2)        L. He, Z. Lan, Y. Yang, Q. Ren, J. W. You, Wei E. I. Sha, L. Wu, and J. Yao, “Wavelength division multiplexing based on coupling effect of helical edge states in two-dimensional dielectric photonic crystals,” Optics Express 32, 11259-11270 (2024).

3)        L. He, Z. Lan, B. Yang, J. Yao, Q. Ren, J. W. You, Wei E. I. Sha, Y. Yang, and L. Wu, “Experimental observation of topological large-area pseudospin-momentum locking waveguide states with exceptional robustness,” Advanced Photonics Nexus 3, 016009 (2024).

4)        X. Wang, X. Wang, Z. Yao, G. Guo, Y. Jia, Y. He, R. Jin, J. You, Q. Ren, Q. Xu, Wei E. I. Sha, and Y. Pang, “Digital imaging through terahertz multifrequency programmable metasurface based on BIC,” Optical Materials 143, 114154 (2023).

5)        X. Wang, X. Wang, J. Xin, J. Li, Q. Ren, H. Cai, Y. Lang, Z. Lan, Y. Jia, R. Jin, Y. He, J. W. You, Wei E.I. Sha, and Y. Pang, “Tailoring the bound states in the multi-channel nonlinear plasmonic metasurfaces,” Optics Communications 549, 129834 (2023).

6)        L. He, Q. Ren, Z. Lan, Wei E. I. Sha, J. W. You, Y. Zhang, and J. Yao, “Coexistence of slow light states and valley-polarized kink states in all-dielectric valley photonic crystals with triangular lattice,” Optics and Laser Technology 167, 109790 (2023).

7)        X. Wang, T. Wang, Q. Ren, J. Xu, and Y. Cui, “Construction of localized state levels and near-infrared light absorption of silicon: B/P doping and first-principles calculations,” Micro and Nanostructures 184, 207695 (2023).

8)        X. Wang, X. Wang, Q. Ren, H. Cai, J. Xin, Y. Lang, X. Xiao, Z. Lan, J. W. You, and Wei E. I. Sha, “Temperature-controlled Optical Switch Metasurface with Large Local Field Enhancement Based On FW-BIC,” Front. Nanotechnol. 5.1112100 (2023).

9)        X. Wang, X. Wang, Q. Ren, H. Cai, J. Xin, Y. Lang, X. Xiao, Z. Lan, J. W. You, and Wei E. I. Sha, “Polarization Multiplexing Multichannel High-Q Terahertz Sensing System,” Front. Nanotechnol. 5.1112346 (2023).

10)     C. Liu, X. Wang, Q. Ren, Z. Yang, Y. Cui, and J. Xu, “Enhanced UV detection of ZnSnO3 hollow spheres: Dark current inhibition from excitons and homostructures based on excitation of oxygen vacancies,” Ceramics International 49, 14459-14469 (2023).

11)     L. He, Q. Ren, Z. Lan, Wei E. I. Sha, J. W. You, Y. Zhang, and J. Yao, “Steering of One-Way Large-Area Waveguide Modes in Topological Heterostructures with Gyromagnetic Photonic Crystals,” Optik 272, 170323 (2023).

12)     L. He, Q. Ren, Y. Zhang, and J. Yao, “Manipulation for One-way Large-Area Helical Waveguide States in Topological Heterostructure,” Optical Materials 135, 113320 (2023).

13)     S. Chen, Q. Ren, K. Zhang, Wei E. I. Sha, T. Hao, W. Wang, H. Xu, J. Zhao, and Y. Li, “A highly sensitive and flexible photonic-crystal oxygen sensor,” Sensors and Actuators B: Chemical 355, 131326 (2022).

14)     X. Wang, B. Leng, Q. Ren, Z. Yang, J. Xin, and X. Wang, “Formation and dissociation of excitons in La3+-doped BaSnO3 and improvement of ethanol sensitivity: Heating, nano-CdSnO3 decoration and UV illumination,” Journal of Alloys and Compounds 926, 166812 (2022).

15)     X. Wang, J. Xin, Q. Ren, H. Cai, J. Han, C. Tian, P. Zhang, L. Jiang, Z. Lan, J. W. You, and Wei E. I. Sha, “Plasmon hybridization stimulated by quasi bound state in the continuum of graphene metasurfaces oriented for high-accuracy polarization-insensitive two-dimensional sensors,” Chinese Optics Letters 20, 042201 (2022).

16)     X. Lai, Q. Ren, F. Vogelbacher, Wei E. I. Sha, X. Hou, Y. Song, and M. Li, “Bioinspired Quasi-3D Multiplexed Anti-counterfeit imaging via Self-assembled and Nanoimprinted Photonic Architectures,” Advanced Materials, 34, 2107243 (2022).

17)     X. Wang, J. Ma, Q. Ren, M. Wang, Z. Yang, and J. Xin, “Effects of Fe3+-doping and nano-TiO2/WO3 decoration on the ultraviolet absorption and gas-sensing properties of ZnSnO3 solid particles,” Sensors and Actuators B: Chemical 344, 130223 (2021).

18)     Q. Zhang, D. Liu, Q. Ren, N. C. Panoiu, L. Lin, J. Ye, Y. Huang, S. Liu, C. W. Leung and D. Lei, “Probing electron transport in plasmonic molecular junctions with two-photon luminescence spectroscopy,” Nanophotonics 10, 2467–2479 (2021).

19)     Q. Ren, F. Feng, X. Yao, Q. Xu, M. Xin, Z. Lan, J. W. You, X. Xiao, and Wei E. I. Sha, “Multiplexing-oriented plasmon-MoS2 hybrid metasurfaces driven by nonlinear quasi bound states in the continuum,” Optics Express 29, 5384-5396 (2021).  

20)     T. Wang, Q. Ren, K. Şafak, F. X. Kärtner, and Ming Xin, “Attosecond-precision balanced linear-optics timing detector,” Optics Express 29, 38140-38149 (2021).

21)     Z. Lan, J. W. You, Q. Ren, Wei E. I. Sha, and N. C. Panoiu, “Second-harmonic generation via double topological valley-Hall kink modes in all-dielectric photonic crystals,” Physical Review A 103, 4 (2021).

22)     S. Yu, X. Li, L. Zhao, M. Wu, Q. Ren, B. Gong, L Li, and H. Shi, “Simultaneously improved Conductivity and Adhesion of Flexible Ag NW Networks Via Hot Lamination Process,” Synthetic Metals 267, 116475 (2020).

23)     Q. Ren, J. W. You, and N. C. Panoiu, “Comparison between the linear and nonlinear homogenization of graphene and silicon metasurfaces,” IEEE Access 8, 175753-175764 (2020).   

24)     Q. Ren, J. W. You and N. C. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Physical Review B 99, 205404 (2019). (IF:4.036, 二区)  

25)     Q. Ren, J. W. You and N. C. Panoiu, “Giant enhancement of the effective Raman susceptibility in metasurfaces made of silicon photonic crystal nanocavities,” Optics Express 26, 30383-30392 (2018).

26)     L. Li, H. Cai, Q. Ren, H. Sun and Z. Gao, “Microstructure and microwave dielectric characteristics of ZnTi (Nb1-xSbx)2O8 ceramics,” Ceramics International 40, 12213–12217 (2014).

27)     L. Li, Z. Gao, Q. Ren, H. Cai and S. Li, “Effect of Zn-excess on sintering behavior and microwave dielectric properties in Mg0.97Zn0.03TiO3 ceramics,” Journal of Alloys and Compounds 617, 841–844 (2014).  

28)     Y. Dang, Y. Zheng, Q. Ren, X. Xiao, Y. He, and Y. Pang, “In-series Deep Learning Techniques for Magnetic Resonance Imaging (MRI) Computation Electromagnetics”, PIERS, 21-25 April, Chengdu, China (2024).

29)     Y. Lang, Q. Ren, X. Xiao, Y. He, and Y. Pang, “E-type Resonator Metasurface Based on BIC for Controllable Multi-band Filtering”, PIERS, 21-25 April, Chengdu, China (2024).

30)     [Invited] Q. Ren, J. W. You and N. C. Panoiu, “Large Enhancement of effective Raman susceptibility of a metasurface made of silicon photonic crystal cavities,” PIERS, 1-4 August, Toyama, Japan (2018).

31)     Q. Ren, J. W. You and N. C. Panoiu, “Enhanced optical nonlinearity of metasurfaces made of patterned graphene nanoribbons,” Advanced Photonics, 2-5 July, ETH Zurich, Switzerland (2018).  

32)     Q. Ren, J. W. You and N. C. Panoiu, “Enhancement of effective second- and third-order optical nonlinearities of graphene-based metasurfaces,” 3-6 September, Photon 2018, Birmingham, UK (2018).  

33)     V. M. F. Laguna, Q. Ren and N. C. Panoiu, “Pulsed dynamics in a system of coupled silicon photonic crystal cavity-waveguide nanostructures,” 11 - 15 August, SPIE Optics + Photonics, San Diego, California, United States (2019).

34)     V. M. F. Laguna, Q. Ren and N. C. Panoiu, “Optical Pulse Dynamics in a Silicon Photonic Crystal Waveguide Coupled with a set of Photonic Crystal Optical Cavities,” International Workshop on Optical Wave & Waveguide Theory and Numerical Modelling, 10-11 May, Málaga, Spain (2019).  

35)     J. W. You, Q. Ren, and N. C. Panoiu, “Strongly Enhanced Second- and Third-harmonic Generation in Graphene Metasurfaces,” 19th IEEE International Conference on Nanotechnology, 22-26 July, Parisian Macao, Macau, China (2019).  

36)     Qun Ren, A Terahertz High-intensity Temperature-switching Plasmonic Metasurface Based on FW-BIC, PIERS, Prague, Czech, 2023.

37)     Qun Ren, Manipulation of the Nonlinear Plasmonic Bound State in the Continuum of Metasurfaces, PIERS, Prague, Czech, 2023.

38)     任群,超构表面非线性连续域束缚态,第二十一届全国基础光学与光物理学术讨论会,2023

39)     任群,郎羽欣,基于连续域束缚态的非线性光学超表面多路定向调控,第三届全国光子技术论坛(GZLT2023

40)     Qun Ren, Xiuyu Wang, Xiaoman Wang, Yuxin Lang, A terahertz high-intensity-field temperature-switching plasmonic metasurface based on FW-BIC, The 14th International Conference on Information Optics and Photonics (CIOP2023)

41)     [Invited] Q. Ren and Wei E. I. Sha, Bound states in the continuum of metamaterials, CMMC, Nanjing, China, 2023.

42)     任群,王秀宇,辛继红,王小曼,基于连续域束缚态的非线性光学超表面多路定向调控,第二十五届全国激光学术会议(Laser2022

43)     王童李明哲于子航张祎任群辛明,高精度光学定时探测技术及其应用研究,[J]. 计测技术. 2022 (05)

44)     T. Wang, Q. Ren, K. Şafak, F. X. Kärtner, and M. Xin, “An attosecond-precision balanced linear timing detector,” in Conference on Lasers & Electro-Optics (CLEO), STh1C.4 (2021).

45)     M. Li, T. Wang, Y. Zhang, Q. Ren, and M. Xin, “A compact 90-degree bending waveguide constructed using an intelligent inverse design algorithm,” in Conference on Lasers & Electro-Optics (CLEO), JW2A.110 (2023).

46)     Q. Ren and Jian Wei You, Manipulation of the nonlinear plasmonic bound state in the continuum of metasurfaces with a quantum oscillator, PIERS, Hangzhou, China, 2021.  

47)     Q. Ren and Jiaqi Han, Linear and Nonlinear Homogenization of plasmonic and all-dielectric Metasurfaces, PIERS, Hangzhou, China, 2021.  

48)     Q. Ren, D. Zs. Manrique and N. C. Panoiu, “Design of two-mode quantum waveguide made of silicon photonic crystal nanocavities,” Barlow Memorial Lecture, Department of Electronic and Electrical Engineering, UCL, London, UK (2017).   

49)     Q. Ren, J. W. You and N. C. Panoiu, “Homogenization of Si-based and graphene-based metasurfaces,” Barlow Memorial Lecture, Department of Electronic and Electrical Engineering, UCL, London, UK (2018).  

发明专利:

(1)      一种基于超材料、表面线圈和去耦超表面的磁场增强器

(2)      一种智能超材料结构

(3)      高量子效率宽光谱吸收CIS新型像素设计和工艺实现方法

(4)      基于三角晶格拓扑光子晶体大宽度波导波分复用分束器

(5)      基于CMOS图像传感器应用的宽光谱吸收光电二极管设计

(6)      一种基于三角晶格谷光子晶体的慢光波导态

(7)      一种基于三角晶格拓扑谷光子晶体的双能带谷霍尔偏振扭态波导

(8)      面向B5G通信的多通道可调控非线性电磁超构表面构建方法

(9)      一种基于多通道调控非线性超表面的滤波器结构

(10)   一种基于超构表面连续域束缚态的非线性响应调控方法

(11)   一种面向高度集成化的拉曼高阶拓扑激光源的设计方法

软件著作权:

(12)   基于COMSOL with MATLAB的光波段低损耗模型BIC求解软件

主要奖励及荣誉:

(1)      2023:天津高校第十七届青年教师教学竞赛选拔赛三等奖

(2)      2023:教育部“一上”——天津大学优质发展潜力青年导师

(3)      2023:入选天津大学科技创新领军人才培育启明计划

(4)      2020:入选中国博士后国际交流引进计划

(5)      2015~2019:国家留学基金委公派直博

(6)      2015~2019:伦敦大学学院院长奖

(7)      2015:潍柴动力奖学金

(8)      2014:新加坡淡马锡基金会奖学金

(9)      2013:教育部国家奖学金

(10)   2012:教育部国家奖学金

(11)   2012:天津夏季达沃斯论坛优秀志愿者(筹备组)