
个人资料:
姓名:杨雄
职称:副教授/硕士生导师
学科专业:控制科学与工程
通讯地址:天津大学电气自动化与信息工程学院26教学楼E区430室
邮 编:300072
电子信箱:xiong.yang@tju.edu.cn
主要经历:
(1) 2016/05至今 天津大学 电气自动化与信息工程学院 副教授
(2) 2016/12--2018/12 University of Rohde Island (USA), Department of Electrical,
Computer, and Biomedical Engineering, Post-Doctoral Fellow
(3) 2014/07--2016/04 中国科学院自动化研究所 复杂系统管理与控制国家重点实验室
助理研究员
(4) 2011/09--2014/07 中国科学院自动化研究所 获工学博士学位
主要研究方向:
(1) 自适应动态规划
(2) 强化学习
(3) 智能控制、最优控制
(4) 深度神经网络
主要科研项目:
(1) 国家自然科学基金面上基金项目 “基于事件驱动的复杂非线性系统自学习鲁棒镇定与优化控制”,负责人
(2) 国家自然科学基金重点项目 “基于数据的建筑群及分布式能源系统一体化建模与自学习优化控制”,参与
(3) 国家自然科学基金青年基金项目 “非线性系统鲁棒镇定与跟踪控制的自适应动态规划方法”,负责人
(4) 国家自然科学基金面上项目 “基于数据的智能电网电能供需自适应优化匹配与调控”,参与
代表性论著、学术著作:
学术论文:
[1] Xiong Yang and Qinglai Wei, Adaptive dynamic programming for robust event-driven tracking control of nonlinear systems with asymmetric input constraints, IEEE Transactions on Cybernetics, vol. 54, no. 11, pp. 6333-6344, Nov. 2024.
[2] Xiong Yang, Wenqian Zheng, and Leijiao Ge, Simultaneous policy iteration for decentralized control of multi-machine power systems, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 6, pp. 3111-3115, June 2024.
[3] Xiong Yang and Yingjiang Zhou, Optimal tracking neuro-control of continuous stirred tank reactor systems: A dynamic event-driven approach, IEEE Transactions on Artificial Intelligence, vol. 5, no. 5, pp. 2117-2126, May 2024.
[4] Xiong Yang, Mengmeng Xu, and Qinglai Wei, Dynamic event-sampled control of interconnected nonlinear systems using reinforcement learning, IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 923-937, Jan. 2024.
[5] Xiong Yang, Zhigang Zeng, and Zhongke Gao, Decentralized neuro-controller design with critic learning for nonlinear-interconnected systems, IEEE Transactions on Cybernetics, vol. 52, no. 11, pp. 11672-11685, Nov. 2022.
[6] Xiong Yang, Yuanheng Zhu, Na Dong, and Qinglai Wei, Decentralized event-driven constrained control using adaptive critic designs, IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5830-5844, Oct. 2022.
[7] Xiong Yang, Haibo He, and Xiangnan Zhong, Approximate dynamic programming for nonlinear-constrained optimizations, IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2419-2432, May 2021.
[8] Xiong Yang and Qinglai Wei, Adaptive critic learning for constrained optimal event-triggered control with discounted cost, IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 91-104, Jan. 2021.
[9] Xiong Yang and Qinglai Wei, Adaptive critic designs for optimal event-driven control of a CSTR system, IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 484-493, Jan. 2021.
[10] Xiong Yang and Haibo He, Adaptive critic learning and experience replay for decentralized event-triggered control of nonlinear interconnected systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4043-4055, Nov. 2020.
[11] Xiong Yang, Zhongke Gao, and Jinhui Zhang, Event-driven H_{\infty} control with critic learning for nonlinear systems, Neural Networks, vol. 132, pp. 30-42, Dec. 2020.
[12] Xiong Yang, Haibo He, and Derong Liu, Event-triggered optimal neuro-controller design with reinforcement learning for unknown nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp. 1866-1878, Sept. 2019.
[13] Xiong Yang, Haibo He, and Xiangnan Zhong, Adaptive dynamic programming for robust regulation and its application to power systems, IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5722-5732, July 2018.
[14] Biao Luo, Tingwen Huang, Huai-Ning Wu, and Xiong Yang, Data-driven H_infinity control for nonlinear distributed parameter systems, IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2949-2961, Nov. 2015.
[15] Derong Liu, Xiong Yang, Ding Wang, and Qinglai Wei, Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints, IEEE Transactions on Cybernetics, vol. 45, no. 7, pp. 1372–1385, July 2015.
[16] Qinglai Wei, Derong Liu, and Xiong Yang, Infinite horizon self-learning optimal control of nonaffine discrete-time nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 26, no. 4, pp. 866–879, Apr. 2015. (SCI) [Awarded 2018 IEEE Computational Intelligence Society TNNLS Outstanding Paper]
学术论著:
(1) Derong Liu, Qinglai Wei, Ding Wang, Xiong Yang, and Hongliang Li, Adaptive Dynamic Programming with Applications in Optimal Control. Cham, Switzerland: Springer, 2017.
主要学术成就、奖励及荣誉:
(1) 入选2023年、2024年度“全球前2%顶尖科学家榜单”
(2) IEEE Transactions on Neural Networks and Learning Systems Outstanding Paper Award, IEEE Computational Intelligence Society
(3) 天津大学“北洋学者·青年骨干教师计划”
(4) 北京市科学技术奖三等奖
(5) 中国科学院院长优秀奖
其他(社会兼职等):
(1) 2021/01--今 期刊IEEE Transactions on Neural Networks and Learning Systems 编委(Associate Editor)
(2) 2022/08--今 Senior Member, IEEE
(3) 2023/07--今 中国自动化学会高级会员
(4) 2016/06--今 Committee on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Chinese Association of Automation
研究生培养情况
(1) 唐玉红(2020级,硕士毕业)
(2) 徐萌萌(2021级,硕士毕业,获2023年国家奖学金,2024年天津大学优秀硕士论文)
(3) 郑雯倩(2022级,硕士毕业,获2024年国家奖学金)
招生方向及要求:
招生方向:控制理论与控制工程(学硕)/电子信息(专硕)
注:(1) 欢迎自动控制或数学与应用数学专业的学生
(2) 具有较强的英语学术论文阅读与写作能力,英语四级成绩应达到550分以上
(3) 熟悉常用仿真软件,如Matlab, Python等
(4) 对科研有兴趣,勤奋严谨,混学位者请勿联系