中文版 | ENGLISH | 会议室预定 | 在线投稿
 
   
 
当前位置: 首页 >> 师资队伍 >> 自动化系 >> 正文
师资队伍

丁红兵

Date:2025年12月11日


个人资料:

姓名:丁红兵

职称:副教授 / 博士生导师

学科专业:控制科学与工程 / 检测技术与自动化装置学科

通讯地址:天津大学电气自动化与信息工程学院26教学楼E515

电子信箱:hbding@tju.edu.cn

电话/传真:022-27402023


主要经历:

(1) 2018.07-至今     天津大学 电气自动化与信息工程学院  副教授,博士生导师

(2) 2017.07-2018.07   The University of Sheffield,访问学者(国家公派)

(3) 2015.02-2018.06   天津大学 电气自动化与信息工程学院  讲师,硕士生导师

(4) 2011.09-2015.01   天津大学 电气与自动化工程学院 控制科学与工程  博士

(5) 2009.09-2011.07   天津大学 电气与自动化工程学院 控制科学与工程  硕士

(6) 2005.09-2009.07   天津大学 电气与自动化工程学院   自动化专业    本科


主要研究方向:

(1) 多相流测量与数值模拟

多相流CFD仿真技术,电学、声学与光学传感技术,高速摄影及图像处理技术

(2) 超音速分离与计量技术

超音速流动传热可视化与分析,碳捕集利用与封存技术(CCUS)超临界CO2热泵

(3) 能源系统热管理与AI驱动建模

动力电池与储能系统热管理,基于AI数据-物理驱动的电--流建模与预测


主要科研项目:

主持项目:

(1) 国家自然科学基金面上项目超音速分离器凝结两相三场耦合机理及其液滴尺寸调控2023-2026

(2) 国家自然科学基金面上项目基于凝结旋流运动映射的超音速分离器多维性能优化研究2019-2022

(3) 国家重点研发计划智能传感器重点专项——“微量程流量敏感元件及传感器项目,子课题负责人(2024-2026

(4) 国家自然科学基金青年项目基于边界层流动特性的音速喷嘴测量机理研究2016-2018

(5) 天津市基金重点项目电动汽车CO2热泵两相流动与热管理系统控制研究2025-2028

(6) 国家自然科学基金面上项目(合作)融合超声和电容传感器的动态CCUS管道输送CO2质量流量在线测量2021-2024

(7) 天津市自然科学基金项目音速喷嘴转捩过程中的流量特性研究2016-2019

(8) 中国石油科技创新基金项目万米深井超临界CO2钻井多相流动及风险防控研究,中国石油集团工程技术研究院(2025-2028

(9) 2020.08-2020.12横向项目:真空环境泄的流场与声场联合分析

(10) 2021.06-2024.05横向项目:环境品质CFD建模与智能监控

(11) 2025.07-2025.12横向项目:气井智控阀天然气流量计量算法研究

(12) 2025.07-2026.07横向项目:高压电容器柜健康度诊断分析及评价

(13) 天津大学北洋学者·青年骨干教师人才项目(2017-2018

(14) 天津市过程检测与控制重点实验室开放基金(2016-2017

参与项目

(1) 国家自然科学基金面上项目雾环状绕流涡街稳定性与测量机理研究2019-2022

(2) 国家自然科学基金重大科研仪器研制项目基于电/磁双模层析成像的高固含率气液固三相流态化实验装置2017-2021

(3) 国家自然科学基金面上项目基于转移和感应电荷信号分解与融合的气固两相流测量机理研究2017-2020

(4) 天津市自然科学基金项目基于TMR传感器的EMT系统关键技术研究2019-2022

(5) 天津市自然科学基金项目基于电导率法与激光散射法结合的雾霾流动参数测量系统研究2018-2021

(6) 天津市自然科学基金项目音速喷嘴凝结作用机理与校正方法研究2015-2018


代表性论著、学术著作:

Peer-reviewed scientific journals (* represents corresponding author)

First/Corresponding Author:

[1] Hongbing Ding, Panpan Zhang, Shiwei Wang, Chuang Wen. Performance analysis of centrifugal compressors in supercritical CO2 Brayton cycles considering non-equilibrium condensation. Chemical Engineering Journal, 524: 169521, 2025.

[2] Hongbing Ding, Xutian Chai, Xinyu Song, Yan Yang, Chuang Wen. Asymmetrical morphological evolution and energy conversion of droplets impacting on the moving film. Physics of Fluids, 37(2): 022025, 2025. (ESI highly cited paper)

[3] Hongbing Ding, Guangchen Zhang, Shiwei Wang, Yu Zhang, Yan Yang, Chuang Wen. Multi-objective optimization of supersonic separator for gas removal and carbon capture using three-field two-phase flow model and non-dominated sorting Genetic Algorithm-II (NSGA-II). Separation and Purification Technology, 358: 130363, 2025.

[4] Hongbing Ding, Xutian Chai, Xinyu Song, Yan Yang. Experimental investigation on dynamics and morphological regions of single and successive droplet impact on moving liquid films. Applied Thermal Engineering, 269: 125976, 2025.

[5] Hongbing Ding, Chao Ji, Shiwei Wang, Hongjun Sun. Study on liquid film characteristics of supersonic separator based on conductance sensor array. IEEE Transactions on Instrumentation and Measurement, 74: 9522111, 2025.

[6] Hongbing Ding, Chao Ji, Panpan Zhang, Yan Yang, Chuang Wen. Homogeneous nucleation and condensation characteristics of water vapor-hydrogen (H2O-H2) binary systems from molecular dynamics simulation. International Journal of Heat and Mass Transfer, 250: 127272, 2025.

[7] Shiwei Wang, Chao Wang, Guangchen Zhang, Hongbing Ding*, Chuang Wen. Expansion refrigeration characteristics of a supersonic condensation and deposition chamber for the CO2 heat pump cycle. International Communications in Heat and Mass Transfer, 169: 109770, 2025.

[8] Hongjun Sun; Haowen Xu; Hongbing Ding*; Yuhang Liu. Simultaneous prediction of gas flow rate and concentration in the micro-calorimetric sensor using physics-guided neural networks. IEEE Sensors Journal, 25(2): 2211-2221, 2025.

[9] Shiwei Wang, Chao Wang, Hongbing Ding*, Guangchen Zhang, Yu Zhang, Chuang Wen. The impacts of structural parameters on performance and energy loss of the supersonic separator: A sensitivity analysis. Separation and Purification Technology, 354, 128853, 2025.

[10] Hongbing Ding, Panpan Zhang, Yuanyuan Dong, Yan Yang. Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation. Renewable Energy, 237: 121748, 2024.

[11] Hongbing Ding, Xinyu Song, Xutian Chai, Chuang Wen, Yan Yang. Morphology and heat transfer of a train of microdroplets impinging on the heated surface for spray cooling. International Communications in Heat and Mass Transfer, 158: 107914, 2024.

[12] Hongbing Ding, Yuanyuan Dong, Yu Zhang, Chuang Wen, Yan Yang. Performance of supercritical carbon dioxide (sCO2) centrifugal compressors in the Brayton cycle considering non-equilibrium condensation and exergy efficiency. Energy Conversion and Management, 299: 117849, 2024.

[13] Hongbing Ding, Yuanyuan Dong, Yu Zhang, Chuang Wen, Yan Yang. Mass, energy and economic analysis of supersonic CO2 separation for carbon capture, utilization and storage (CCUS). Applied Energy, 373: 123856, 2024.

[14] Hongbing Ding, Yuanyuan Dong, Yan Yang, Chuang Wen. (2024). Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes. Applied Energy, 372: 123810, 2024.

[15] Hongbing Ding, Yuanyuan Dong, Yu Zhang, Chuang Wen, Yan Yang. Exergy performance analysis of hydrogen recirculation ejectors exhibiting phase change behaviour in PEMFC application. Energy, 300: 131563, 2024.

[16] Hongbing Ding, Xinyu Song, Jinxia Li, Chuang Wen, Hongjun Sun, Zhihua Bao, Xixi Liu, Experimental investigation on droplet evolutions in co-flow around the bluff body. Experimental Thermal and Fluid Science, 151: 111106, 2024.

[17] Shiwei Wang, Chao Wang, Hongbing Ding*, Shujuan Li. Evaluation of dynamic behaviors in varied swirling flows for high-pressure offshore natural gas supersonic dehydration. Energy, 300: 131498, 2024.

[18] Hongjun Sun, Teng Li, Jinxia Li, Hongbing Ding*. Generalization of disturbance wave velocity of vertical annular flow considering entrained droplets effect. Experimental Thermal and Fluid Science, 151: 111102, 2024.

[19] Hongjun Sun, Zhen Yang, Jinxia Li, Hongbing Ding*, Pengfei Lv. Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS. Energy, 298: 131377, 2024.

[20] Hongbing Ding, Yuanyuan Dong, Yu Zhang, Yan Yang, Chuang Wen. Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system. Applied Energy, 346: 121357, 2023.

[21] Hongbing Ding, Yu Zhang, Yuanyuan Dong, Chuang Wen, Yan Yang. High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology. Applied Energy, 339: 120975, 2023. (ESI highly cited paper)

[22] Hongbing Ding, Yu Zhang, Yan Yang, Chuang Wen. A modified Euler-Lagrange-Euler approach for modelling homogeneous and heterogeneous condensing droplets and films in supersonic flows. International Journal of Heat and Mass Transfer, 200: 123537, 2023.

[23] Hongbing Ding, Zhengqi Chen, Hongjun Sun, Yan Yang, Zhenxin Liang, Yu Zhang. Measurement of the thin liquid film at the wet-gas outlet of the supersonic separator by FPC conductance sensor. IEEE Transactions on Instrumentation and Measurement, 72: 7503413, 2023.

[24] Shiwei Wang, Chao Wang, Hongbing Ding*, Yu Zhang, Yuanyuan Dong, Chuang Wen. Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator. Energy, 279: 128122, 2023.

[25] Hongjun Sun, Zhihua Bao, Xixi Liu, Hongbing Ding*. Radial distribution characteristics of droplet size and velocity in annular mist flow around the bluff body. Chemical Engineering Science, 280: 119034, 2023.

[26] Hongbing Ding, Yuanyuan Dong, Yu Zhang, Yan Yang, Chuang Wen. A potential strategy of carbon dioxide separation using supersonic flows. Separation and Purification Technology, 303: 122153, 2022.

[27] Hongbing Ding, Yu Zhang, Chunqian Sun, Yan Yang, Chuang Wen. Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models. Energy, 258: 124833, 2022.

[28] Hongbing Ding, Yu Zhang, Chunqian Sun, Esmail Lakzian, Chuang Wen, Chao Wang. Unsteady non-equilibrium condensation flow of 3-D wet steam stage of steam turbine with roughness using sliding mesh method. International Journal of Thermal Sciences, 179: 107674, 2022.

[29] Hongbing Ding, Chunqian Sun, Chuang Wen, Zhenxin Liang. The droplets and film behaviors in supersonic separator by using three-field two-fluid model with heterogenous condensation. International Journal of Heat and Mass Transfer, 184: 122315, 2022.

[30] Hongbing Ding, Yafei Zhao, Chuang Wen, Chao Wang, Xixi Liu. A visual mass transfer study in the ejector considering phase change for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Desalination, 532: 115722, 2022.

[31] Hongjun Sun, Tianyu Yang, Hongbing Ding*, Jinxia Li, Wenqiang Zhang. Online measurement of gas and liquid flow rates in wet gas by using vortex flowmeter coupled with conductance ring sensor. IEEE Transactions on Instrumentation and Measurement, 71: 7500414, 2022.

[32] Hongbing Ding, Yuhe Tian, Chuang Wen, Chao Wang, Chunqian Sun. Polydispersed droplet spectrum and exergy analysis in wet steam flows using method of moments. Applied Thermal Engineering, 182: 116148, 2021.

[33] Hongbing Ding, Yafei Zhao, Yuhe Tian, Chuang Wen, Chao Wang. Modeling of self-excited oscillation of non-equilibrium condensation in transonic moist air flow. International Journal of Thermal Sciences, 168: 107040, 2021.

[34] Hongbing Ding, Yafei Zhao, Chuang Wen, Chao Wang, Chunqian Sun. Energy efficiency and exergy destruction of supersonic steam ejector based on nonequilibrium condensation model. Applied Thermal Engineering, 189: 116704, 2021.

[35] Hongjun Sun, Yikun Luo, Hongbing Ding*, Jinxia Li, Chenrui Song, Xixi Liu. Experimental investigation on atomization properties of impaction-pin nozzle using imaging method analysis. Experimental Thermal and Fluid Science, 122: 110322, 2021.

[36] Peijuan Cao, Chao Wang, Chunhui Li, Lishui Cui, Hongbing Ding*, Yafei Zhao. The thermal effect on discharge coefficient of sonic nozzle based on reconstructed body temperature distribution by improved SOR method. IEEE Transactions on Instrumentation and Measurement, 70: 1007416, 2021.

[37] Hongbing Ding, Chunqian Sun, Chao Wang, Chuang Wen, Yuhe Tian. Prediction of dehydration performance of supersonic separator based on a multi-fluid model with heterogeneous condensation. Applied Thermal Engineering, 171: 115074, 2020.

[38] Hongbing Ding, Yiming Li, Chao Wang, Chuang Wen, Yuhe Tian. Feature extraction of oscillating flow with vapor condensation of moist air in a sonic nozzle. IEEE Transactions on Instrumentation and Measurement, 69(9): 6465-6477, 2020.

[39] Hongbing Ding, Yiming Li, Esmail Lakzian, Chuang Wen, Chao Wang. Entropy generation and exergy destruction in condensing steam flow through turbine blade with surface roughness. Energy Conversion and Management, 196: 1089-1104, 2019.

[40] Chao Wang, Peijuan Cao, Chunhui Li, Hongbing Ding*, Lishui Cui. Influence of wall roughness on boundary layer transition position of the sonic nozzles. Measurement, 139: 196-204, 2019.

[41] Chao Wang, Peijuan Cao, Hongbing Ding*, Xiaotong Wang, Daxuan Lin. Signal analysis of supersonic vapor condensation in nozzle sensor using distributed transient pressure probes. IEEE Transactions on Instrumentation and Measurement, 68(4): 1053-1061, 2019.

[42] Chao Wang, Jinxia Li, Hongbing Ding*, Hongjun Sun, Xiaoliang Li. Vortex flowmeter with enhanced turndown ratio based on high-frequency pressure sensors and improved convection velocity estimation. Flow Measurement and Instrumentation, 69: 101626, 2019.

[43] Hongbing Ding, Peng Xie, Derek Ingham, Lin Ma, Mohamed Pourkashanian. Flow behaviour of drop and jet modes of a laminar falling film on horizontal tubes. International Journal of Heat and Mass Transfer, 124: 929-942, 2018.

[44] Chao Wang, Xiaotong Wang, Hongbing Ding*. Boundary layer of non-equilibrium condensing steam flow in a supersonic nozzle. Applied Thermal Engineering, 129: 389-402, 2018.

[45] Hongbing Ding, Chao Wang, Gang Wang. Thermal effect on mass flow-rate of sonic nozzle. Thermal Science, 22(1): 247-262, 2018.

[46] Hongbing Ding, Chao Wang, Gang Wang. Self-excited oscillation of non-equilibrium condensation in critical flow nozzle. Applied Thermal Engineering, 122: 515-527, 2017.

[47] Hongbing Ding, Chao Wang, Gang Wang. Transient conjugate heat transfer in critical flow nozzles. International Journal of Heat and Mass Transfer, 104: 930-942, 2017.

[48] Hongbing Ding, Chao Wang, Gang Wang. Approximate solution for discharge coefficient of the sonic nozzle with surface roughness. Flow Measurement and Instrumentation, 52: 227-232, 2016.

[49] Chao Wang, Gang Wang, Hongbing Ding*. Thermal effect on body temperature distribution of the critical flow Venturi nozzle. Experimental Thermal and Fluid Science, 79: 187-194, 2016.

[50] Hongbing Ding, Chao Wang, Gang Wang, Chao Chen. Analytic equations for the Wilson point in high-pressure steam flow through a nozzle. International Journal of Heat and Mass Transfer, 91: 961-968, 2015.

[51] Hongbing Ding, Chao Wang, Chao Chen. Experimental and numerical studies on self-excited periodic oscillation of vapor condensation in a sonic nozzle. Experimental Thermal and Fluid Science, 68: 288-299, 2015.

[52] Hongbing Ding, Chao Wang, Yakun Zhao. Surface roughness effect on flow measurement of real gas in a critical nozzle. Measurement, 68: 82-91, 2015.

[53] Hongbing Ding, Chao Wang, Chao Chen. Effect of carrier gas pressure on vapor condensation and mass flow-rate in a sonic nozzle. Journal of Central South University, 22(12): 4864-4871, 2015.

[54] Hongbing Ding, Chao Wang, Yakun Zhao. Flow characteristics of hydrogen gas through a critical nozzle. International Journal of Hydrogen Energy, 39(8): 3947-3955, 2014.

[55] Hongbing Ding, Chao Wang, Yakun Zhao. An analytical method for Wilson point in nozzle flow with homogeneous nucleating. International Journal of Heat and Mass Transfer, 73: 586-594, 2014.

[56] Hongbing Ding, Chao Wang, Chao Chen. Non-equilibrium condensation of water vapor in sonic nozzle. Applied Thermal Engineering, 71(1): 324-334, 2014.

[57] Hongbing Ding, Chao Wang, Yakun Zhao. Influence of divergent section on flow fields and discharge coefficient of ISO toroidal-throat sonic nozzle. Flow Measurement and Instrumentation, 40: 19-27, 2014.

Co-Author:

[1] Peiliang Yan, Chuang Wen, Hongbing Ding, Xuehui Wang, Yan Yang. The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems. Applied Energy, 390: 125863,2025.

[2] Jinxia Li, Hongbing Ding, Hongjun Sun, Teng Li. Wet gas flow metering by combining a vortex flowmeter with disturbance wave frequency. Measurement Science and Technology, 35: 025301, 2024.

[3] Esmail Lakzian, Shima Yazdani, Fahime Salmani, Omid Mahian, Heuy Dong Kim, Mohammad Ghalambaz, Hongbing Ding, Yan Yang, Bo Li, Chuang Wen. Supersonic separation towards sustainable gas removal and carbon capture. Progress in Energy and Combustion Science, 103: 101158, 2024.

[4] Peiliang Yan, Weijun Fan, Yu Han, Hongbing Ding, Chuang Wen, Anas F.A. Elbarghthi, Yan Yang. Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems. Applied Energy, 346: 121352, 2023.

[5] Peiliang Yan, Weijun Fan, Yan Yang, Hongbing Ding, Adeel Arshad, Chuang Wen. Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations. Applied Energy, 327, 120064, 2022.

[6] Chuang Wen, Bo Li, Hongbing Ding, Mohammad Akrami, Haoran Zhang, Yan Yang. Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing. Applied Energy, 310: 118523, 2022.

[7] Daryoush Dadpour, Esmail Lakzian, Mohammad Gholizadeh, Hongbing Ding, Xu Han. Numerical modeling of droplets injection in the secondary flow of the wet steam ejector in the refrigeration cycle. International Journal of Refrigeration, 136: 103-113, 2022.

[8] Chuang Wen, Hongbing Ding, Yan Yang. Numerical simulation of nanodroplet generation of water vapour in high-pressure supersonic flows for the potential of clean natural gas dehydration. Energy Conversion and Management, 231: 113853, 2021.

[9] Yan Yang, Nikolas Karvounis, Jens Honore Walther, Hongbing Ding, Chuang Wen. Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations. Energy, 237: 121483, 2021.

[10] Chuang Wen, Yan Yang, Hongbing Ding, Chunqian Sun, Yuying Yan. Wet steam flow and condensation loss in turbine blade cascades. Applied Thermal Engineering, 189: 116748, 2021.

[11] Chuang Wen, Liang Gong, Hongbing Ding, Yan Yang. Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Applied Energy, 279: 115831, 2020.

[12] Chuang Wen, Hongbing Ding, Yan Yang. Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour. Energy Conversion and Management, 222: 113210, 2020.

[13] Chuang Wen, Hongbing Ding, Yan Yang. Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 489: 114531, 2020.

[14] Peng Xie, Hongbing Ding, Derek Ingham, Lin Ma, Mohamed Pourkashanian. Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces. Applied Thermal Engineering, 178: 115583, 2020.

[15] Chuang Wen, Nikolas Karvounis, Jens Honore Walther, Hongbing Ding, Yan Yang. Non-equilibrium condensation of water vapour in supersonic flows with shock waves. International Journal of Heat and Mass Transfer, 149: 119109, 2020.

[16] Peng Xie, Xuesong Lu, Hongbing Ding, Xin Yang, Derek Ingham, Lin Ma, Mohamed Pourkashanian. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed. Chemical Engineering Science, 199: 528-545, 2019.

[17] Yan Yang, Xiaowei Zhu, Yuying Yan, Hongbing Ding, Chuang Wen. Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation. Applied Energy, 242: 157-167, 2019.

学术论著:

(1) Ding HB, Wen C, Yang Y. Supersonic separators for sustainable gas purification, Switzerland: Springer Nature, 2025ISBN: 978-3-031-85213-8

(2) 计算机控制技术(参编),机械工业出版社,2020

(3) 数字化网络化控制技术(副主编),机械工业出版社,2024


授权发明专利:

(1) 丁红兵、王世伟、王超、张光晨,可调式超音速两相膨胀器及冷热联供CO2热泵系统(授权),专利号:ZL202511492823.5授权时间2025.12.05.

(2) 丁红兵、王世伟、王超TTPESORC相结合的天然气组分脱除工艺系统(授权),专利号:ZL202310448159.9授权时间:2025.11.25.

(3) 丁红兵、柴旭天、乔云浩、康子杰,一种雾状流液滴参数提取方法(授权),专利号:ZL202210484648.5授权时间:2025.08.12.

(4) 丁红兵、赵亚菲、孙宏军、王世伟、贾智超、苏立红、俎鹏辉、郭生强,一种基于混合模拟退火算法的分离器凝结位置预测方法(授权),专利号:ZL202210232294.5授权时间:2024.07.12.

(5) 丁红兵、梁真馨、李一鸣,一种音速喷嘴管壁二维瞬态温度场重构方法(授权),专利号:ZL201911277469.9,授权时间:2024.02.13.

(6) 丁红兵、陈政奇、孙宏军、梁真馨,基于柔性液膜传感器的超音速分离器监测及故障诊断系统(授权),专利号:ZL202110715057.X,授权时间:2024.01.19.

(7) 丁红兵、王世伟、王超、孙春倩、梁真馨、赵亚菲,可调式超音速分离装置及其自抗扰控制方法(授权),专利号:ZL202110694429.5,授权时间:2022.09.27.

(8) 丁红兵、孙春倩、王超、赵亚菲,一种移动式超音速喷嘴连续测量系统(授权),专利号:ZL201911229750.5,授权时间:2022.05.13.

(9) 丁红兵、田雨禾、梁真馨,一种基于气溶胶增强凝结的旋流超音速分离器实验系统,专利号:ZL202010244588.0授权时间:2021.07.27.

(10) 丁红兵、梁真馨、曹培娟,一种音速喷嘴管壁热场分布测量系统,专利号:ZL202010209500.1授权时间:2021.04.27.

(11) 丁红兵、李一鸣、王超、李金霞、张哲晓,一种多参数可调的雾状流实验系统,专利号:ZL201810644726.7授权时间:2021.03.23.

(12) 丁红兵、王超、林大烜,基于模糊PID的微雾发生装置控制方法,专利号:ZL201610697385.0,授权时间:2018.11.09.

(13) 丁红兵、王刚、王超,管壁内部动态温度分布实时监测方法,专利号:ZL201610614916.5,授权时间:2018.09.25.


主要讲授课程:

(1) 计算机控制技术基础(本科生)

(2) 智能装置与设计(本科生)

(3) 智能装置课程设计(本科生)

(4) 预测控制系统(硕士生/博士生)


主要学术成就、奖励及荣誉:

(1) 入选美国斯坦福大学全球前2%顶尖科学家榜单

(2) 入选ScholarGPS全球前0.05%顶尖科学家榜单

(3) 第四届全国高校自动化类专业青年教师实验设备设计创客大赛金奖,教育部高等学校自动化类专业教学指导委员会,2025

(4) 天津市科学技术进步奖,二等奖,3/82022

(5) 中国计量测试学会科学技术进步奖,一等奖,8/102017

(6) 2021年度ATE编辑精选奖,Editor Choice Paper Award, Applied Thermal Engineering, 2021, awards a prize for only 4 best papers of the year (more than 1,600 papers per year)

(7) 受邀担任VinFuture全球科技奖提名专家,2023

(8) 中国仪器仪表学会测量控制与仪器仪表领域全国优秀博士论文(共2人),2017

(9) 教育部·高等学校虚拟仿真实验教学资源建设成果奖,一等奖,2016

(10) 天津市“131”创新型人才培养工程第三层次,2017

(11) 天津大学北洋学者·青年骨干教师人才支持计划

(12) 天津大学沈志康奖教金,天津大学毕业设计优秀指导教师,天津大学优秀硕士论文指导教师,天津大学自动化学院优秀班主任等


其他(社会兼职等):

(1) International Journal of Aerospace Engineering (SCI), Editor Board Member; 中南大学学报(自然科学版)青年编委会。

(2) 中国自动化学会智能制造系统与技术专业委员会委员、中国计量测试学会多相流测试专业委员会青年委员等。

(3) Session Chair: International CCUS Conference (ICCUSC), 2023; Applied Energy Symposium, Clean Energy Towards Carbon Neutrality (CEN), 2023; 14th International Conference on Applied Energy (ICAE), 2022; 14th International Green Energy Conference (IGEC-XIV), 2022; 11th International Symposium on Measurement Techniques for Multiphase Flow, 2019.

(4) 全国多相流测试青年论坛会议(20242025)、2024年中国高等教育学会工程热物理专业委员会第三十届全国学术会议、2023年中国工程热物理学会多相流年会分会主席,2020年中国工程热物理学会热机气动热力学和流体机械学术年会分会主席,2023年、2021年中国多相流测试学术年会分会主席等。

(5) 评议专家:国家科技专家库,国家自然科学基金天津市、上海市、北京市、重庆市等科技专家库。

(6) 受邀参与QS全球学术声誉调查 QS Global Academic Survey

(7) 受邀参与泰晤士高等教育全球学术声誉调查THE's Global Academic Reputation Survey