个人资料:
姓名:孟庆浩
职称:教授/博士生导师
学科专业:控制科学与工程
电子信箱:qh_meng@tju.edu.cn
电话:022-87895036
通讯地址:天津大学电气自动化与信息工程学院第26教学楼E区521室
工作经历:
2011-至今:天津大学机器人与自主系统研究所(http://robot.tju.edu.cn)所长
2014-2018:天津大学电气自动化与信息工程学院副院长(分管科研与研究生管理)
2005-至今:天津大学电气自动化与信息工程学院,博士生导师
2004-至今:天津大学电气自动化与信息工程学院,教授
2003-2004:天津大学电气自动化与信息工程学院,副教授
2001-2003:德国Ravensburg-Weingarten应用科学大学自主机器人系统实验室,博士后
2000-2001:德国慕尼黑联邦国防军大学测量科学研究所,博士后
1999-2000:河北工业大学自动化系,副教授
1997-1999:河北工业大学自动化系,讲师
研究领域:
(1) 机器人嗅觉:气味/气体检测、识别与追踪
(2) 嗅/触觉情感计算:嗅觉/触觉诱发的情绪识别与调控
(3) 水下机器人系统:AUV环境感知、定位、建模与控制
(4) 数字嗅觉:气味存储、编码/解码与展现
主要科研项目:
(1) 面向***的电子鼻技术,**项目(批准号:***),2022-2024,负责人。
(2) 面向深海区域混合结构探测的多关节潜器研发,国家重点研发计划项目(批准号:2017YFC0306200):2017-2021,负责人。
(3) 三维时变气流环境下机器人寻踪气味源方法研究,国家自然科学基金项目(批准号:61573253):2016-2019,负责人。
(4) 突发毒害气体泄漏源快速远程定位及应急防护系统,天津市科技支撑项目(批准号:2007AA04Z219):2014-2016,负责人。
(5) 室外动态气流环境下多机器人嗅觉极值搜索,高等学校博士学科点专项科研基金项目(批准号:20120032110068):2012-2015,负责人。
(6) 动态气流环境中机器人主动嗅觉鲁棒寻源方法研究,国家自然科学基金项目(批准号:60875053):2009-2011,负责人。
(7) 气味寻踪机器人系统关键技术研究,十一五“863项目”(批准号:2007AA04Z219):2007-2010,负责人。
(8) 机器人主动感知技术,教育部新世纪优秀人才支持计划(批准号:NCET-07-0600):2007-2010,负责人。
(9) 基于混沌编码的机器人实时导航用无串扰声纳系统研究,国家自然科学基金项目(批准号: 60475028):2005-2007,负责人。
(10) 移动机器人嗅觉传感器阵列与味源定位策略研究,十五“863”项目“极限环境下面向危险品检测的多感官机器人系统”(编号2006AA04Z221)子课题,负责人。
(11) 移动机器人全局定位与位姿跟踪新方法的研究,教育部留学回国人员科研启动经费:2005-2006,负责人。
(12) 以移动机器人作为实例的基于INTERNET的远程实验,基于实际课题的中德人员互访PPP 项目:2004-2005,负责人。
(13) 海上导航灯器信息检测及通用型控制器研发,天津开发区瑞锋科技有限公司:2004-2005,负责人。
(14) LearNet,德国八所大学合作开发的基于互联网的教学实验开发项目:2001-2003,负责人。
代表性论著、学术著作:
学术著作:
(1) 孟庆浩, 李吉功, 张勇, 王阳. 机器人主动嗅觉. 国防工业出版社, 2022.
(2) 孙以材, 刘新福, 孟庆浩. 传感器非线性信号的智能处理与融合. 冶金工业出版社, 2010.
(3) 现代传感技术及应用(负责第六章“移动机器人传感器”). 化学工业出版社, 2008.
(4) 孙以材, 刘玉岭, 孟庆浩. 压力传感器的设计制造与应用. 冶金工业出版社, 2000.
近五年发表的部分论文:
[1] Y. K. Li, Q. H. Meng, Y. X. Wang, T. H. Yang, H. R. Hou. MASS: A multi-source domain adaptation network for cross-subject touch gesture recognition. IEEE Transactions on Industrial Informatics, 2023, 19(3): 3099-3108.
[2] S. Jin, X. Y. Dai, Q. H. Meng. “Focusing on the right regions” - Guided saliency prediction for visual SLAM. Expert Systems with Applications, 2023, 213: 119068.
[3] M. Jabeen, Q. H. Meng, T. Jing, H. R. Hou. Robot odor source localization in indoor environments based on gradient adaptive extremum seeking search. Building and Environment, 2023, 229: 109983.
[4] Z. Yan, Q. H. Meng, T. Jing, S. W. Chen, H. R. Hou. A deep learning-based indoor odor compass. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2505410.
[5] S. Jin, X. Y. Dai, Q. H. Meng. Loop closure detection with patch-level local features and visual saliency prediction. Engineering Applications of Artificial Intelligence, 2023, 120: 105902.
[6] X. Deng, Q. H. Meng, T. Jing, H. R. Hou. A portable e-nose endowed with subjective evaluation function of air quality in vehicles. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2507911.
[7] H. R. Hou, Q. H. Meng, L. C. Jin. A double triangular feature-based sensor sequence coding approach for identifying Chinese liquors using an e-nose system. IEEE Sensors Journal, 2022, 22(5): 3878-3887.
[8] Y. K. Li, Q. H. Meng, T. H. Yang, Y. X. Wang, H. R. Hou. Touch gesture and emotion recognition using decomposed spatiotemporal convolutions. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2500809.
[9] Y. X. Wang, Y. K. Li, …, Q. H. Meng. Multitask touch gesture and emotion recognition using multiscale spatiotemporal convolutions with attention mechanism. IEEE Sensors Journal, 2022, 16(15): 16190-16201.
[10] H. R. Hou, Q. H. Meng, B. Sun. A triangular hashing learning approach for olfactory EEG signal recognition. Applied Soft Computing, 2022, 118: 108471.
[11] X. N. Zhang, Q. H. Meng, M. Zeng. A novel channel selection scheme for olfactory EEG signal classification on Riemannian manifolds. Journal of Neural Engineering, 2022, 19(4): 046006.
[12] S. Jin, Q. H. Meng, X. Y. Dai, H. R. Hou. Safe-Nav: learning to prevent point goal navigation failure in unknown environments. Complex & Intelligent System, 2022, 8: 2273-2290.
[13] H. R. Hou, R. X. Han, X. N. Zhang, and Q. H. Meng. Pleasantness recognition induced by different odor concentrations using olfactory electroencephalogram signals. Sensors, 2022, 22: 8808.
[14] X. Y. Dai, Q. H. Meng, S. Jin, et al. Camera view planning based on generative adversarial imitation learning in indoor active exploration. Applied Soft Computing, 2022, 129: 109621.
[15] K. X. Liu, H. Y. Wang, …, Q. H. Meng. Development and trials of a novel deep-sea multi-joint autonomous underwater vehicle. Ocean Engineering, 2022, 265: 112558.
[16] L. Cheng, Q. H. Meng, A. J. Lilienthal, et al. Development of compact electronic noses: a review. Measurement Science and Technology, 2021, 32: 062002.
[17] H. R. Hou, Q. H. Meng, P. F. Qi, T. Jing. A hand-held electronic nose system for rapid identification of Chinese liquors. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2006411.
[18] Y. B. Liu, M. Zeng, Q. H. Meng. Unstructured road vanishing point detection using convolutional neural networks and heatmap regression. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5002708.
[19] J. Y. Wang, Q. H. Meng, X. W. Jin, et al. Design of handheld electronic nose bionic chambers for Chinese liquors recognition. Measurement, 2021, 172: 108856.
[20] Y. K. Li, Q. H. Meng, H. W. Zhang. Touch gesture recognition using spatiotemporal fusion features. IEEE Sensors Journal, 2021, 22(1): 428-437.
[21] H. R. Hou, Q. H. Meng. A double-square-based electrode sequence learning method for odor concentration identification using EEG signals. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2510110.
[22] X. N. Zhang, Q. H. Meng, M. Zeng, H. R. Hou. Decoding olfactory EEG signals for different odor stimuli identification using wavelet-spatial domain feature. Journal of Neuroscience Methods, 2021, 363: 109355.
[23] X. Y. Dai, Q. H. Meng, S. Jin. Uncertainty-driven active view planning in feature-based monocular vSLAM. Applied Soft Computing, 2021, 108(1): 107459.
[24] T. Jing, Q. H. Meng, H. Ishida. Recent progress and trend of robot odor source localization. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(7): 938-953.
[25] L. Yu, Q. H. Meng, and H. W. Zhang. 3-Dimensional modeling and attitude control of multi-joint autonomous underwater vehicles. Journal of Marine Science and Engineering, 2021, 9: 307.
[26] Y. B. Liu, M. Zeng, Q. H. Meng. D-VPnet: A network for real-time dominant vanishing point detection in natural scenes. Neurocomputing, 2020, 417: 432-440.
[27] J. Y. Wang, Q. H. Meng, B. Wu, et al. A novel indoor smell regulation method. AIP Advances, 2020, 10: 105226.
[28] H. R. Hou, A. J. Lilienthal, Q. H. Meng. Gas source declaration with tetrahedral sensing geometries and median value filtering extreme learning machine. IEEE Access, 2020, 8(1): 7227-7235.
[29] H. R. Hou, X. N. Zhang, Q. H. Meng. Olfactory EEG signal classification using a trapezoid difference based electrode sequence hashing approach. International Journal of Neural Systems, 2020, 30(3): 2050011.
[30] H. R. Hou, X. N. Zhang, Q. H. Meng. Odor-induced emotion recognition based on average frequency band division of EEG signals. Journal of Neuroscience Methods, 2020, 334: 108599.
[31] Y. J. Liu, M. Zeng, Q. H. Meng. Electronic nose using a bio-inspired neural network modeled on mammalian olfactory system for Chinese liquor classification. Review of Scientific Instruments, 2019, 90(2): 025001.
[32] J. Y. Wang, M. Zeng, Q. H. Meng. Latticed mode: A new control strategy for wind field simulation in a multiple-fan wind tunnel. Review of Scientific Instruments, 2019, 90(8): 085104.
[33] J. G. Li, M. L. Cao, Q. H. Meng. Chemical source searching by controlling a wheeled mobile robot to follow an online planned route in outdoor field environments. Sensors, 2019, 19(2): 426.
[34] H. R. Hou, Y. Tong, C. Ren, Q. H. Meng. A gas source declaration scheme based on a tetrahedral sensor structure in three-dimensional airflow environments. Review of Scientific Instruments, 2019, 90(2): 024104.
[35] H. R. Hou, B. Sun, Q. H. Meng. Slow cortical potential signal classification using concave–convex feature. Journal of Neuroscience Methods, 2019, 324: 108303.
[36] B. Luo, Q. H. Meng, J. Y. Wang, et al. A flying odor compass to autonomously locate the gas source. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 137-149.
[37] Y. J. Liu, Q. H. Meng, X. N. Zhang. Data processing for multiple electronic noses using sensor response visualization. IEEE Sensors Journal, 2018, 18(22): 9360-9369.
[38] Y. J. Liu, Q. H. Meng, P. F. Qi, B. Sun, X. S. Zhu. Using spike-based bio-inspired olfactory model for data processing in electronic noses. IEEE Sensors Journal, 2018, 18(2): 692-702.
[39] J. Y. Wang, B. Luo, M. Zeng, Q. H. Meng. A wind estimation method with an unmanned rotorcraft for environmental monitoring tasks. Sensors, 2018, 18(12): 4504.
[40] Y. Song, B. Luo, Q. H. Meng, et al. A rotor-aerodynamics-based wind estimation method using a quadrotor. Measurement Science and Technology, 2018, 29(2): 025801.
[41] J. Y. Wang, Q. H. Meng, B. Luo, et al. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation. Review of Scientific Instruments, 2018, 89(3): 035108.
[42] H. R. Hou, Q. H. Meng, M. Zeng, B Sun. Improving classification of slow cortical potential signals for BCI systems with polynomial fitting and voting support vector machine. IEEE Signal Processing Letters, 2018, 25(2): 283-287.
近五年获得的授权专利:
(1) 一种基于单目摄像头辅助的机器人定位方法. 中国发明专利, ZL201910994961.1.
(2) 一种基于移动机器人的指针仪表检测与读数识别方法. 中国发明专利, ZL201910866810.8.
(3) 一种便携式电子鼻富集装置温度补偿方法. 中国发明专利, ZL201910760939.0.
(4) 一种基于TDLAS传感器的气体泄漏源搜索方法. 中国发明专利, ZL2018116001199.8.
(5) 一种可用于多电子鼻平台的图像化白酒识别方法. 中国发明专利, ZL201810276780.0.
(6) 一种基于仿生嗅球模型和卷积神经网络的电子鼻识别方法. 中国发明专利, ZL201810228239.2.
(7) 一种用于在线白酒识别的手持电子鼻. 中国发明专利, ZL201710547486.4.
(8) 基于三维移动传感器节点的气体泄漏监测与定位方法. 中国发明专利, ZL201710575105.3.
(9) 一种基于响应曲线微分特性的电子鼻采样数据预校验方法. 中国发明专利, ZL201610663135.5.
(10) 一种气味来源三维方向检测方法. 中国发明专利, ZL201710173931.5.
(11) 一种电子鼻仿生呼吸采样方法. 中国发明专利, CN201610662961.8.
(12) 用于三维环境中气味源方向指示的检测方法. 中国发明专利, CN201610815146.0.
(13) 旋翼无人机机载三维气味来源方向检测方法. 中国发明专利, CN201610845950.3.
主要讲授课程:
讲授过的课程
(1) 线性系统理论 (硕士研究生)
(2) 机器人学导论 (本科生)
(3) MCS-51单片微型计算机原理及应用 (本科生)
(4) 控制系统计算机仿真与辅助设计 (本科生)
(5) 移动机器人技术基础 (本科生)
(6) 计算机控制系统(本科生)
在讲课程
(1) 智能机器人系统(博士生)
(2) 自主机器人感知与导航(硕士生)(全英文授课)
(3) 计算机控制理论与应用 (本科生)
社会兼职:
中国人工智能学会智能产品与产业工委会常委
天津市机器人学会理事
天津市电子学会理事